
Design and Implementation of a Grid Architecture
over an Agent-Based Framework

Christian Vecchiola, Alberto Grosso, Roberto Podestà, Antonio Boccalatte

DIST – University of Genoa
Via Opera Pia 13

 16142, Genova, Italy
{christian, agrosso, ropode, nino}@dist.unige.it

ABSTRACT

Agent based programming presents several features appearing to be interesting for Grid and distributed
computing needs. The typical environment required by Grid computing is complex, heterogeneous, and highly
dynamic. The autonomous and flexible behavior provided by software agents meets various Grid requirements.
In this paper we present the design and the implementation of a Grid architecture built over an agent based
framework called AgentService. In this work we highlight the advantages in using the services of an agent
oriented framework to develop a Grid application.

Keywords
Agent Mobility, Load Balancing Policy, Agent Framework, Grid computing

1. INTRODUCTION
Resource sharing through the Internet has become in
the last years a paramount instrument for scientists,
not only because it offers great advantages in
distributed computing, but also because data sharing
is becoming more and more useful in many scientific
fields. Resources can be classified in three different
groups: data, services, and computational power. By
following this classification we can distinguish three
types of grids [Fos01a]. Data Grids manage huge
collections of geographically distributed data, which
can be generated in many different ways, for
example data streams are daily sent from satellites
for weather forecast and climatic changes analysis;
large collections of data generated from scientific
experiments allow geographically distributed
researchers to collaborate to the same research
project. Service Grids provide services that could not
be obtained from a single platform: for example
streaming multimedia services or collaborative
applications. Computational Grids provide the
aggregate power of a collection of processors spread

over the network as a unique, meta-computer.

In general, grid computing system are intended to
replicate in the computing world the notion of a
distribution grid fostered by utility networks such as
the electrical power grid. In the vision of grid
computing, computational power, memory, and disk
space should be obtained “on demand” from a
network of “suppliers”, potentially belonging to the
entire Internet.

In the last decade, distributed high performance
computing has been built mainly on cluster
computing systems where the communication among
the different components of an application is
performed using the message passing model
implemented by systems such as MPI [MPI] and
PVM [Gei94a]. Current trends in the grid community
aim at providing frameworks not more strictly tied to
the classical parallel computing programming model.
However, is very hard to migrate this model to a
dynamically changing environment such as the
Internet, thus, in order to cope with the new
challenges, a more structured, service and object
oriented approach has to be adopted. The evolution
toward a heterogeneous, dynamic, distributed over
multiple domains environment has brought to the
definition of the Open Grid Service Architecture
[Fos02a] (OGSA), which proposes the convergence
between grid computing and Web Services
technologies in order to get over the classical parallel
programming paradigm. The main, world-wide
known Grid project, namely the Globus Toolkit
[Fos05a], in its latest release implements the OGSA

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006
Copyright UNION Agency – Science Press,
Plzen, Czech Republic.

specification, and leverages on Web Services
technologies and on the most widely known Internet
standards. With this choice Globus is able to make
available cluster-based high performance computing
services to simple clients and end users without a
specific parallel programming know-how too.

Moreover, starting from analogue considerations was
conceived the Alchemi project [Luth05a]. Its authors
aim at involve into the grid community the unused
computational power provided by the almost
ubiquitous Windows-based desktops. The Alchemi
platform is a .Net-based framework providing the
runtime machinery and the programming
environment required to construct enterprise/desktop
grids and to develop grid applications. Alchemi is
able to interface with a Globus grid too, leveraging
on a Web Services interface. Another effort trying to
port the grid computing towards an object oriented
programming model is the H20 [H20] project. This
project provides a platform independent Java-based
framework able to build meta-computing application
leveraging on various remote method invocation
protocol, such as SOAP, Java RMI, and TCP-based
RPC [Kur03a].

It is our opinion that moving from the parallel
computing programming model to a services and
object oriented model, built on top of widely known
technologies, can not be considered the last step of
the Grid programming paradigm evolution. For
example, Agent technology [Jen99a] and the agent
programming model could be very useful to build
virtual, highly dynamic, and distributed environment
such as the context where typically operates a Grid
framework. Agents are autonomous software entities
with some level of intelligence; agents work better if
they belong to a community such as a multi-agent
system (MAS) [Wei99a]. Agents act in a distributed
manner, cooperate, compete, and negotiate to solve a
problem or to perform a task. These features make
the agents an interesting technology to implement
Grid infrastructures.

In this paper we present the design and the
implementation of a Grid Computing architecture
over an agent based framework. The Grid
infrastructure has been built leveraging on the
capabilities of the .Net based AgentService
programming platform [Boc04a].

The paper is structured as follows: in section 2 we
provide a brief overview on agent technology and
multi-agent systems, and we describe the related
synergy with grid computing; section 3 includes the
description of AgentService programming platform;
in section 4 we provide a detailed description of our
agent-based Grid Computing architecture; section 5
shows a case study where our framework has been

adopted; finally in section 6 we provide some
concluding remarks, and we depict possible future
works.

2. AGENT TECHNOLOGY AND GRID
A software agent is an autonomous software entity
able to expose a flexible behavior. Flexibility is
obtained by means of reactivity, pro-activity and
social ability [Wei99a]. Reactivity is the ability to
react to environmental changes in a timely fashion
while pro-activity is the ability to show a goal
directed behavior by taking the initiative. Social
ability, that is the ability to interact with peers by
means of cooperation, negotiation, and competition,
is one of the most important features of agent
oriented programming: agents do their best when
they interoperate. Interaction is obtained by
arranging agents in communities called multi-agent
systems (MAS). MAS are generally decentralized
open systems with distributed control and
asynchronous computation: they provide a context
for agents’ activity with the definition of interaction
and communication protocols. In addition they are
scalable, fault-tolerant, reliable, and designed for
reuse.

An abstract architecture specification of a generic
multi-agent system has been proposed by the
Foundation of Intelligent Physical Agents (FIPA), an
international organization that promotes standards for
agent technologies. The proposed architecture
[FIP01a] is implemented by different multi-agent
systems and has been taken as reference model in the
comparison of different implementations of MAS.

Agents are reliable components to build flexible and
fail safe systems, since autonomy and reactivity
allow recovering from fault conditions. Agent and
multi-agent technologies provide a promising
approach to make Grid technologies smarter, more
flexible, and adaptable. To support Grid computing,
agents can offer different roles, be organized into
dynamic groups, and be able to migrate between
groups to support load balancing. Therefore, agents
could play an important role in Grid computing, and
Grid computing can offer useful test-beds for
investigating Agent services. The social ability, the
autonomous and flexible behavior could play an
important role for the communication and the
interaction with different nodes, for example, in
exchanging information about the resources available
on each node. The intrinsic nature of Agent
technology, explicitly oriented to model high
dynamic and complex systems [Woo99a], seems to
be well suited to meet the Grid computing
requirements. Moreover, the adoption agent
technology could bring to Grid users and
administrators more friendly and understandable

interfaces to interact with the system. Some projects
have already proved that the agent oriented approach
could be adopted for Grid computing. The Agile
Architecture and Autonomous Agent [Cao02a,
Cao01a] (A4) is an agent based methodology for grid
resource management. The computational power of
the Grid is managed with a hierarchy of identical
agents used to provide an abstraction of the system
architecture. Each agent is able to cooperate with
other agents to provide service advertisement and
discovery to schedule applications that need to use
grid resources. The Bond Agent System [BOND] is a
FIPA project on top of which is possible to build
agent based applications able to manage the state of
the nodes and the coordination of a distributed
system such a Grid [Kha03a].

3. THE AGENTSERVICE
PROGRAMMING PLATFORM
AgentService [Boc04a] is a framework designed to
develop multi-agent systems. It provides a class
library to implement agents, an agent platform
hosting multi-agent systems and a set of monitoring
and design tools supporting either the development
or the management of the MAS. The framework does
not enforce particular agent architectures, but
provides developers with a flexible agent model
based on the concepts of knowledge and behavior.
An agent is modeled, and implemented, as a software
entity whose state is defined a set of knowledge
objects, and whose activity is carried out by a set of
concurrent tasks known as behavior objects. A
knowledge object is a shared object containing
related items which together define a unit of
information. Knowledge objects can be shared
among behaviors objects which model the different
capabilities of an agent. AgentService comes with a
set of extensions to the C# programming language
that simplifies the development of agent applications.
The AgentService object-oriented model is hidden by
the APX [Vec03a], so that a clear agent-oriented
interface is offered to the developers with slight
changes to the C# syntax.

The platform provides a complete environment to
execute agent instances which rely on the advanced
services of the platform: repository, communication,
and directory services. Some of these services
become strategic when platform instances constitute
the nodes of a computing grid. In particular directory
and communication services are discussed in detail.

Directory Service
AgentService has been designed following the
architectural specifications provided by FIPA which
states that a set of basic services are required on each

agent platform. These are implemented as agents and
are:

- Agent Management Service (AMS) -
supervisor and controller of the platform
services;

- Directory Facilitator (DF) - providing yellow
pages service;

- Message Transport Service (MTS) - managing
communication service.

Directory services are fundamental in dynamic and
distributed environments due to the fact that a single
entity needs to know if, when, and where a specific
service is available. For these reasons DF is a
compulsory component for an agent platform. In
AgentService each platform provides a directory
service to agents. By registering to the DF agents can
specify the services they offer and their
communication profile. Directory Facilitator agents
scattered on AgentService platforms can join
together to form a federation, hence if an agent
registers to the local DF, it becomes visible, and
advertises its services, to all the platforms of the
federation. When deregistration occurs the
information is spread on all the nodes of the
federation. DF agents maintain a distributed database
of all the services available on the federation: each
agent by interacting with the local DF gets access to
an entire net of services. DF agents according to the
service profile advertise it on all the nodes of the
federation or just to a subset of it. The ability of
controlling the advertising policy allows a better use
of the network resource.

Communication Infrastructure
A dedicated agent, the MTS (Message Transport
Service) is responsible of managing the platform
messaging subsystem. The messaging subsystem is
implemented within a module and by default
AgentService provides a communication service
based on message exchange and conversations
(connected communication between two agents).
The ability of changing the implementation and the
communication channel among platform nodes in a
transparent manner for agents is remarkable
advantage of this architecture: the implementation of
the module is hidden to the MTS, and then to the
agents, which interacts with the module through the
IMessagingModule interface. The messaging module
creates and maintains a specific message queue for
each agent hosted in the platform and can choose the
best technology solution to store this information (a
database, a file system, or a message queuing
service). Messages exchanged among agents are
compliant to the FIPA specifications and need to
contain only serializable items, since messages may

trespass the boundary of the single machine. The
default messaging module provided with the
AgentService installation comes with two
fundamental services: conversations and inter-
platform message dispatching. Conversations are
connected message exchange services and provide a
useful abstraction to model interaction protocols.
Inter-platform message dispatching allows the
community of agents to extend beyond the single
platform instance boundaries. The communication
among different AgentService installations is based
on the Web Service infrastructure provided by .NET
framework. Hence soap messages are exchanged
among platforms and a specific format of the xml
content is defined by AgentService to ensure the
secure and correct delivery of the messages. The
.NET automatic serialization process for the soap
messages has been customized to allow the
serialization of agent messages and to decrease the
amount of the transferred data without loss of
information.

Additional Services
The platform has been designed to be an extensible
software environment: the community of agents
hosted in the federation of platforms evolves and
additional features may be required when the system
is installed. Hence the ability to extend the proper
capabilities becomes a requirement. The architecture
of the platform allows third party modules to be
integrated into the platform core and to offer services
to either the other modules or the agents. By using
this technique the platform has been extended by an
FTP service available to all the other platform
components. Agents and other modules can require a
folder space or just send files by using the service as
a simple FTP client.

The directory service, the communication
infrastructure and additional services, together with a
set of dedicated agents constitute the core of the grid
infrastructure provided with AgentService.

4. DESIGN OF A GRID
INFRASTRUCTURE OVER THE
AGENTSERVICE PLATFORM
The elements defining the grid infrastructure are
agents, platform components, and additional
services. Agents encapsulate the logic of the system
while platform components and additional services
maintain its structure. This organization is replicated
on each installation of the platforms participating in
the grid.

Figure 1 gives an overview of the entire system. The
federation of the platforms defines the boundary of
the grid. The structure of the systems is dynamic

since AgentService instances can dynamically join
the federation by sending a message to the agent
managing one of the nodes. In the same way nodes
can detach from the system. This is a fundamental
feature for grid systems that are dynamic by nature.
According to the configuration of the node each
platform can act as a computational node, provide
access to the system, or perform both the two roles.

The System’s Logic: the Agents
The logic of the system is composed by a community
of specific agents deployed on each installation of
the AgentService platform. In this section we will
describe the tasks delivered to each agent and how
they take advantage of the services offered by the
platform to deploy and to manage the infrastructure
of the computational Grid.

Each node which is part of the grid infrastructure is
equipped with an installation of the AgentService
platform. On each node the platform hosts the
following agents:

- NodeManager: the NodeManager is the
maintainer of the node, it coordinates all the
activities required to implement the grid
service. The NodeManager maintains a registry
of the platforms which constitute the
computational grid and manages the dynamic
registration of platform instances. The
NodeManager is responsible of assigning a task
to a specific node by looking at the topology of
the grid, at the computational load of each
node, and at the services offered by that node.

Figure 1. A graphical overview of the Grid
Architecture based over the AgentService

Framework

- Carrier: the Carrier agent is responsible of
transferring on the selected node of the grid all
the resources required to perform the task. The
Carrier relies on the file transfer service offered
by the platform, by which it delivers to the
selected node the object code containing the
task and all the related input or data files.

- Authenticator: an instance of the Authenticator
agent manages the security of the node; it
maintains a registry of user profiles, checks the
user credentials when a task is submitted to the
grid, and applies the security policies defined in
the user management module.

- Worker: multiple instances of the Worker
agent are hosted on each node and take care of
tasks execution. On the selected node, the
NodeManager contacts the worker agent every
time a new task needs to be executed; the
worker agent sets up the computing
environment required for the task, executes the
task, and eventually communicated the results.
The NodeManager agent can limit the
maximum number of concurrent Worker agent
instances in order to control the computational
load of the node. Worker agents can perform
many tasks concurrently thanks to agent model
adopted by AgentService. The tasks partition
criteria among worker agents can be defined as
configuration parameters of the node or
dynamically decided by the NodeManager; a
simple selection criterion could be dividing the
tasks according to the permission of the users
they belong to.

Tasks are submitted to the grid and NodeManager
agents cooperate to identify the candidate node on
which the task will be executed. Since cooperation,
negotiation, and competition are natural activities in
multi-agent systems this functionality is naturally
obtained by using the agent oriented approach. In the
same way localization of services and coordination
within a single node are obtained with less effort.

The Grid Structure
The community of agents that is distributed on the
nodes constituting the grid gives a high level view of
the entire grid. The implementation of the
infrastructure strongly relies on the core services of
the platform. In particular, communication services,
file transfer, and localization. These features are
respectively implemented by using the messaging
subsystem, the FTP service, and the DF agents
spread on each node.

The messaging subsystem is one of the core elements
of both the multi-agent system and the grid
infrastructure implemented on it. Software agents
interact with peers by exchanging messages; hence
the coordination of the elements defined in the
logical layer is based on the messaging subsystem.
The ability to communicate with peers hosted on
other nodes is a requirement to distribute
computation; hence, the installation of AgentService
has been customized with a messaging module that

uses the web services technology to deliver messages
on other platforms. The use of web services provides
a solid, well known standard allowing
interoperability and integration with other
applications. Agent messages are required to be
serializable but not to be represented by using a
SOAP message. The platform replaces the default
XML serialization provided by the .NET framework
with a custom technique that reduces the body of the
SOAP message and allows the transport of any
serializable managed type. The messaging module
attaches the description of the type to the binary
serialization of each item in the agent message; the
binary instance is encoded into a base64 string and
transmitted as an attribute of the XML element
representing the item. On the target node each item is
reconstructed according to the type information
attached to the item: the full name of the type, its
assembly name, and the public key token of the
assembly are used to de-serialize the instance into the
original object. This solution speeds up the
transmission of any complex object via web services,
avoids type mismatch, and is completely transparent
to developers which are not required to provide an
XML serializer for every type they define.

The ability to transfer objects among platform nodes
is a requirement for distributing the computation.
The messaging subsystem provides a simple way to
transport messages but it cannot handle efficiently
the transfer of large amount of data. Moreover, the
communication infrastructure has been designed to
send .NET instances and not for large files. For this
reason, the installation of AgentService has been
enriched with an additional module that handles the
FTP protocol. The module integrates into the
platform and provides this feature as service. The
FTP service can be exploited either by software
agents or platform modules and it is mainly used to
move on the target node all the assemblies containing
the code executing the task and the required data
files. Modules and software agents can dynamically
check the availability of the service and eventually
require a personal folder or just submit a file to
transfer. When files are uploaded to the server the
owner of the folder is notified about the transfer. In
this case the FTP service is mainly used by the
Carrier agent who is responsible of transferring the
assemblies containing the task to be executed on the
target node. Carrier agents ask for a personal folder
to the FTP service and the FTP service creates the
corresponding directory in the root folder of the FTP
server. When a task is moved to a node of the grid
the Carrier agent on the source platform instruct the
FTP service to upload the file on the target platform.
When the upload is finished the FTP service of the
target platform notifies the Carrier agent about the

transferred files. The same interaction pattern is used
by modules if they need to send or receive files.

Localization and discovery of services play an
important role in distributed systems. The ability to
discover agents and the services they offer is a
requirement for agent communities which are
dynamic by definition. These are requirements for
Grid systems too: nodes should be able to obtain
information about other nodes in order to distribute
the load. Within AgentService a distributed directory
service is responsible of advertising and retrieving
services available in the multi-agent system.
Directory Facilitator agents constitute a federation
sharing all the information about published services.
DF agents provide information to NodeManager and
Carrier agents: the first ones query the local DF in
order to know all the other NodeManager agents and
set up the topology of the grid; the second ones look
for Carrier agents when they need to transfer files on
a selected node. DF agents are also useful for
connecting agents within a single node: each of the
previously defined agents register its service profile
to the local DF. Directory Facilitator agents can be
instructed for a local search: in this way the agents
defining the logical layer of the grid connect each
other.

Many of the elements constituting the infrastructure
of the grid are provided by the environment hosting
the agent. These elements are commonly required by
the agents to perform their activities; hence the use of
a multi-agent system for grid computing can strongly
simplify the development of grid system. In addition,
the modular architecture of the AgentService
platform and its natural extensibility allows the
simple implementation of the missing features as in
the case of the FTP service.

5. CASE STUDY
A common computing task submitted to the grid can
be taken as a case study since it is useful to describe
the interaction among the agents modeling the logical
layer of the grid and their connection with system
components.

Users that want to submit a job to the grid have to
contact those nodes which are configured as access
points to the grid. These nodes are the starting point
of the entire process. The user authenticates by
sending a message containing tis credentials to the
Authenticator agent of the access point. Installations
of the AgentService platforma provide a
communication channel that can be used by GUIs or
web applications for remote management and access:
the common scenario involves a web application
connecting to the access point through a web browser
submitting a task by uploading all the required files.

The web application connects to the platform with
the credentials provided by the user and queries the
DF for the Authenticator agent which checks the user
permissions and validates the request of the user. The
Authenticator agent sends a message to the
NodeManager agent of the same platform which
selects the best node of the grid according to:

- the user profile;

- the type of task to execute;

- the availability of processor cycles on each
node.

In order to select the best node NodeManager
interacts with the other NodeManager agents hosted
on the other platforms. The NodeManager agents
maintain updated the state of the entire grid by
exchanging messages when interesting events occur
(a task is finished, a task is started, a task has been
aborted); hence, each NodeManager agent is always
aware of the status of the grid.

Figure 2. Sequence diagram describing the

protocol for task execution

Once the node has been selected the local
NodeManager is contacted to start the task. The
target node could require additional resources to
perform the task and in that case the NodeManager
agent instructs the local Carrier agent to accomplish
the transfer on the target site. The local Carrier agent
by querying the DF looks for the remote Carrier
agent and then sets up the transfer by using the local
FTP service. On transfer completion the Carrier
agent on the selected node notifies the local
NodeManager that all the resources required to
perform the task are available. This is the final step
of the activation process: the NodeManager agent
according to the computational load of the node
requires a new Worker agent or submits the work
request to an active Worker agent. The number of

active Worker agent can change on each node and
the NodeManager itself can dynamically decide the
best policy to apply. Figure 2 depicts the sequence
diagram describing task execution after the credential
of the user have validated.

The Worker agents picks up a new work request
inspects the information describing the task to
execute and by means of reflection creates a new
instance of the type defining the tasks, starts its
activity by using a configuration files transmitted
along with the resources. Assemblies containing the
tasks can be cached on the nodes in the platform
storage and useless transfers can be avoided. The
types must implement the following interface:

interface ITask
{
 bool IsReusable { get; }
 Exception Error { get; }
 bool Prepare(string configFile);
 void Execute();
 bool Abort();
 bool Dispose();
}

In order to execute a task the Worker agent creates
an instance of the required type and invokes the
Prepare method that configures the task to execute. If
the method returns true the task will be executed by
invoking the Execute method and upon completion a
call to Dispose finalizes the execution and eventually
communicates the results. Exceptions occurred
during execution are obtained by looking at the Error
property while, while IsReusable is true if the same
instance can be used to perform many tasks of the
same type in sequence. Two additional interfaces are
provided to make tasks execution more flexible:
IControllableTask and IIterativeTask. The first one
adds facilities to control task execution with a pause-
resume pattern while the second one allows the
execution of tasks one step at time.

When the task is finished, the Worker agent notifies
the NodeManager about completion which update
the status of the grid.

6. CONCLUDING REMARKS AND
FUTURE WORKS
Agent technology seems an interesting solution to
implement distributed and dynamic computational
environments: agents confer a certain degree of
autonomy to the system components and simplify the
creation of dynamic relations among them. Hence,
the use of such technology in the field of grid
computing is a reasonable and interesting approach.
This paper has presented the design and the
implementation of an infrastructure for grid
computing which relies on agent technology and

takes advantage of the AgentService framework. The
community of agents defines the logic of the system
while the extensible core of the agent platform
implements the low level services required by a Grid
architecture. This approach has two main advantages:

- the coordination and task distribution policies
can rely on the interaction capabilities of
agents: they are high level system components
which naturally embed negotiation, competition
and cooperation capabilities;

- the default services provided by multi-agent
system meet typical grid computing
requirements; hence the use of a modular and
extensible multi-agent system, like
AgentService, as a backbone simplifies and
improves the efficiency in the Grid architecture
development.

The structure of the system is based on a net of
platform instances connected together by using the
web services technology. Web services are used only
for communication and AgentService implements
custom technique which allows the transfer of any
.NET serializable and complex object, keeps the
SOAP packet small, and speeds up the transfer. The
use of web services could lead to possible
performance bottlenecks but message exchange
among agents should have a small cost if compared
to the time required to perform tasks submitted to the
grid. In addition, AgentService uses web services
only for communication and has been enriched with
an FTP service that is used to move object code and
data files among node.

The architecture described in this paper is
specifically designed for computational Grids, but
the underlying model can be applied also to other
types of grids. A possible extension of the presented
architecture could be the ability to move agents
which are performing a task in order to apply load
balancing policies. This service could be provided by
adding a mobility module in order to provide a task
migration service. This module allows agent
instances to cross the platform boundaries and move
among AgentService platform instances.

7. REFERENCES
[Fos01a] Foster, I., Kesselman, C., and Tuecke, S.

The Anatomy of the Grid. Enabling Scalable
Virtual Organizations. International Journal of
Supercomputer Applications, 2001

[MPI] Message Passing Interface Forum. Message
Passing Interface, documentation available on
line at www.mpi-forum.org

[Gei94a] Geist, A., Beguelin, A., Dongarra, J., Jiang,
W., Mancheck, B., and Sunderam, V. PVM:
Parallel Virtual Machine a User’s Guide and

Tutorial for Networked Parallel Computing. MIT
Press, Cambridge, MA, 1994

[Fos02a] Foster, I., Kesselman, C., Nick J., Tuecke
S., The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration, Global Grid Forum, June 22, 2002

[Fos05a] Foster, I., Globus Toolkit Version 4:
Software for Service-Oriented Systems, IFIP
International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, pp 2-
13, 2005

[Lut05a] Luther, A., Buyya, R., Ranjan, and
R.,Venugopal, S., Alchemi: A .NET-Based
Enterprise Grid Computing System, Proceedings
of the 6th International Conference on Internet
Computing (ICOMP'05), June 27-30, 2005, Las
Vegas, USA.

[H20] H2O Project,
http://www.mathcs.emory.edu/dcl/h2o/

[Kur03a] Kurzyniec, D., Wrzosek, T., Sunderam, V.,
and Slominski, A.. RMIX: A Multiprotocol RMI
Framework for Java. In Proc. of the International
Parallel and Distributed Processing Symposium
(IPDPS'03), pages 140-146, Nice, France, 2003

[Jen99a] Jennings, N.R., and Wooldridge, M.,
Agent-Oriented Software Engineering,
Proceedings of the 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent
World : Multi-Agent System Engineering
(MAAMAW-99), 1999

[Wei99a] Weiss, G., Multi-agent Systems – A
Modern Approach to Distributed Artificial
Intelligence, G. Weiss Ed., Cambridge, MA, 1999

[Boc04a] Boccalatte, A., Gozzi, A., and Grosso, A.,
Una Piattaforma per lo Sviluppo di Applicazioni
Multi-Agente, WOA 2003: dagli oggetti agli
agenti – sistemi intelligenti e computazione
pervasiva, Villa Simius, Italy, September 2003

[FIP01a] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/

 [Woo99a] Wooldridge, M., Intelligent Agents, in
Multi-agent Systems – A Modern Approach to
Distributed Artificial Intelligence, G. Weiss Ed.,
Cambridge, MA, 1999, pp. 27-78

 [Cao02a] Cao, J., Spooner, D. P., Turner, J. D.,
Jarvis, S. A., Kerbyson, D. J., Saini, S., and
Nudd, G. R., Agent-Based Resource Management
for Grid Computing, Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’02)

 [Cao01a] Cao, J., Kerbyson, D. J., and Nudd, G. R.,
Performance Evaluation of an Agent-Based
Resource Management Infrastructure for Grid
Computing, Proceedings of 1st IEEE/ACM
International Symposium on Cluster Computing
and the Grid (CCGrid '01), Brisbane, Australia,
May 2001

 [BON] BOND Project, http://bond.cs.ucf.edu/
 [Kha03a] Khan, M.A., Vaithianathan, S.K.,

Sivoncic, K., and Boloni, L. Towards an Agent
Framework For Grid Computing, CIPC-03
Second International Advanced Research
Workshop on Concurrent Information Processing
and Computing, Sinaia, Romania, 2003

 [Boc04a] Boccalatte, A., Gozzi, A., Grosso, A., and
Vecchiola, C. AgentService. The Sixteenth
International Conference on Software
Engineering and Knowledge Engeneering
(SEKE’04), Banff Centre, Banff, Alberta, Canada
20-24 June 2004

[Vec03a] Vecchiola, C., Coccoli, M., and Boccalatte,
A. Agent Programming Extensions relying on a
component oriented infrastructure, Proceedings
of the 2003 IEEE International Conference on
Information Reuse and Integration (IRI - 2003),
Oct. 26-29, Las Vegas, NV, 2003.

