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ABSTRACT 

This paper describes a low-overhead self-tuning sampling-based runtime profiler integrated into SSCLI virtual 

machine. Our profiler estimates how “hot” a method is and builds a call context graph based on managed stack 

samples analysis. The frequency of sampling is tuned dynamically at runtime, based on the information of how 

often the same activation record appears on top of the stack. The call graph is presented as a novel Call Context 

Map (CC-Map) structure that combines compact representation and accurate information about the context. It 

enables fast extraction of data helpful in making compilation decisions, as well as fast placing data into the map. 

Sampling mechanism is integrated with intrinsic Rotor mechanisms of thread preemption and stack walk. A 

separate system thread is responsible for organizing data in the CC-Map. This thread gathers and stores samples 

quickly queued by managed threads, thus decreasing the time they must hold up their user-scheduled job. 
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1. INTRODUCTION 
Optimization techniques based on profile data 

obtained at run time form the essential part of 

optimization strategy in modern dynamic compilation 

frameworks.[Arn02][Sug01][Jav02]  Static analysis 

alone cannot provide sufficiently full information by 

sufficiently low cost to make optimizations pay for 

themselves in dynamic compilers. Managed 

environments have the distinguishing capability to 

provide feedback and use it in compilation at the very 

time the program executes, and runtime profilers are 

designed to utilize this capability. With profile data 

enabling selective optimization of the “hot” pieces of 

code we gain much more. 

There are two main types of profile data optimizing 

compiler may be interested in: individual methods 

“hot counts”, i.e. precise or approximate estimation 

of method execution frequency, and some kind of 

“call graph” which can provide information about the 

frequency of calls from one method to another. The 

former is used to pick up the individual “hot” 

methods for recompilation, the later helps to plan 

optimizations in the broader context taking into 

account the hot paths through the whole application. 

Many techniques have been developed to collect and 

store runtime profile data. But the key point has 

always been a balance between the accuracy of 

profile data and low overhead of profiling facilities, 

which have to do their job at run time thus adding to 

compilation overhead. Experiment results show that 

strictly accurate profile is not necessary to make a 

good recompilation decision, so sampling profilers 

turned out an excellent tool to get rather complex 

information about program behavior with low 

overhead. 

Typical sampling profiler working as a part of a 

dynamic compilation framework acts as follows: 

periodically it launches a task that looks up a stack 

for managed methods frames, then forms collected 

data into some structure reflecting dynamic call 

context and stores it for the subsequent use. [Arn02] 

[Wha00]  Our profiler developed for SSCLI (Rotor) 

also utilizes this classical schema. It uses the 

mechanism for exploring stack that Rotor already has 

(we will cover it later) and stores data in Call Context 
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Map structure that contains counters for individual 

methods calls, total count for every call done by one 

method to the other, and detailed information about 

the context in which the call occurs. 

Contributions 
This paper makes the following contributions: 

• Data structures.  It describes a Call Context 

Map (CC-Map) data structure used for encoding 

runtime profile information. It shows the 

advantages of the Call Context Map: its 

capability to provide the full information needed 

for recompilation decisions quickly and with 

minimum effort remaining at the same time a 

rather compact structure. It describes the 

algorithm for filling CC-Map from a raw stack 

samples containing references to managed 

methods metadata and offsets in code. 

• Profiling Techniques.  The paper presents a 

profiling technique based on profiler and 

managed threads cooperation and background 

processing of raw samples data, which allows 

maintaining a complex structure of profile data 

storage not causing the managed threads to 

postpone their jobs for a long time. The bunch 

processing of samples helps to minimize 

synchronization on the global samples cache. 

• Experience using SSCLI features. The paper 

shows how the SSCLI core functions and 

structures were used to help collecting stack 

samples and organizing profile data. It also 

describes the utilization of core SSCLI 

mechanism for threads cooperation and 

synchronization to provide cooperative behavior 

in gathering samples. 

• Evaluation of overhead and accuracy of 

profiling. The paper presents evaluation of 

accuracy and overhead of the profiler ran on the 

SSCLI quality test suit using simple execution 

counters statistical correlation and Arnold & 

Ryder overlap percentage measure[Arn02]. 

2. RELATED WORK 
Many papers published in the last years show the 

benefits of profile-driven optimizations and the ways 

profile data may be used in compilation decisions. 

Arnold[Arn02] in his PhD thesis paper describes in 

detail several kinds of profile-driven optimizations 

implemented in Jikes JVM. Suganuma et. al. 

[Sug01] in their review of IBM DK optimizing JIT-

compilation framework give a full picture of how 

instrumentation and sampling based profiling is used 

to collect profile data from interpreted and compiled 

code, respectively. They provide experiment results 

showing the evident advantages of profile-based 

selective optimizing compilation over both 

optimizing non-selective and fast non-optimizing 

non-selective compilation. 

Several studies show the practical use of dynamic 

profile data in such optimizations as inlining 

[Sug02] and devirtualization[Ish00]. These two types 

of optimization are very important for managed 

environments with intrinsic support of object-oriented 

languages where most method calls are virtual and 

many levels of indirection often present. Suganuma 

et. al. [Sug03] introduce an interesting optimization 

technique, Region-Based Compilation, that allows 

more effective use of profile data. 

Whaley[Wha00]  describes several different 

approaches to profile data organization: Dynamic 

Call Graph (DCG), Calling Context Tree (CCT), 

Partial Calling Context Tree (PCCT). Arnold et. al. 

[Arn00] shows in more detail how the DCG is 

constructed. We’ll look closer at these structures in 

the next section where we describe our data 

representation choice, Call Context Map (CC-Map), 

and compare it with the other options. CC-Map is in 

many respects similar to CCT and PCCT, but 

provides easier ways to retrieve full context 

information. Also we don’t place such restrictions on 

the length of a sample, as PCCT-based approach 

described by Whaley. In our profiling framework we 

allow sample buffers to grow when needed, although 

we define some rather high limit for the cases of 

incredibly deep stack, which are rare. 

Arnold and Grove [Arn05] propose an interesting 

variation of samples collection technique. Instead of 

taking one sample at a time, their profiler takes a 

bunch of samples: when profiling is requested, stack 

walk is performed several times over a short interval. 

Authors show how this approach helps eliminate 

inaccuracy in some situations. 

3. PROFILER DESIGN 
In this section we describe an overall structure of the 

profiler: how the sample data storage is organized 

and how the samples gathering mechanism works. 

We introduce a Call Context Map (CC-Map) that 

allows easy retrieving of many kinds of data needed 

for compilation/recompilation decisions. We present 

a sampling strategy that helps to maintain a rather 

complex CC-Map structure and at the same time not 

cause the user threads job to be postponed for long 

intervals. In the next section we’ll take a closer look 

at the Rotor-specific issues and show how the profiler 

uses intrinsic mechanisms of the SSCLI virtual 

machine to do its job. 



Call Context Map 

3.1.1 Previous approaches 
The common way to represent the sequences of calls 

with their relative frequency in runtime profile data is 

using some kind of call context tree. Call context tree 

consists of nodes correspondent to the method calls 

and directed edges, which denote caller-callee 

relations. The examples are Dynamic Call Graphs 

(DCG, DCG-E) described by Arnold et. al. 

[Arn00] and Calling Context Tree/Partial Calling 

Context Tree (CCT, PCCT) described by 

Whaley[Wha00] . Dynamic Call Graph is shown on 

the Figure 1b. Nodes represent method calls, edges 

mark associations between caller and callee, and 

weights assigned to edges mean the number of calls 

from the specified caller to the specified callee 

encountered in samples. This is rather compact 

representation but the information we can retrieve 

from it is limited. We can estimate how often one 

method calls the other, but with DCG alone we 

cannot determine, for example, that call chain ACD 

has never been encountered in samples, ABC has 

been encountered 2 times, and BCD – only once. 

Thus DCG can effectively represent only one-level-

depth profile. 

 

Figure 1. DCG and PCCT structures: a) samples 

collected from stack; b) correspondent DCG; c) 

correspondent PCCT 

Partial Calling Context Trees (CCT) shown on Figure 

1c provides more context information. Details of 

PCCT construction are covered in [Wha00]. They 

build PCCT using the fixed length buffer for samples, 

so that a delay does not be very long when the stack 

is extremely deep. When a sample is got and a PCC-

Tree with the outer caller as a root is found, profiler 

updates counters for edges in this tree, otherwise a 

new tree is created. Here we can point out longer call 

sequences, but still cannot know, without additional 

analysis, that calls from B to C have been 

encountered 4 times, totally. To retrieve this 

information we should examine all the trees looking 

for edges BC and adding the counters to the total 

sum.  

One more problem is illustrated by Figure 2a. Let we 

have a call graph shown at the left side of the figure. 

A and E call B and in both cases B calls C. Then C 

calls D or F. Also the samples with B as the outer 

frame are found, as shown on the figure. Let we build 

the Call Context Trees form these samples. We get 

three of them, with A, E, and B as roots. 

 

Figure 2. More complex call context 

Here the hottest path is actually BCD, which executes 

8 times. But we cannot retrieve this information 

automatically having only the CC-trees in hand. We 

cannot queue BCD path for possible recompilation 

automatically when the total counter exceeds 

threshold because we haven’s such a total counter. 

The solution might be to construct/update CCT for 

every caller in the chain when a sample is got, but 

this way we fail to distinguish the frequencies of call 

to BCD in different contexts. For example, if the 

situation is like the one shown on Figure 2b, we’ll fail 

to know that BCD path (executes 8 times totally) is 

actual only for calls from A. For E call site the path 

EBCF is really hot. The PCC-trees for this case (3 

trees shown at the right side of the Figure 2b) reveal 

it clearly. If we update counters for BC and CD in the 

tree with B root every time the path is encountered in 

a sample, at any place, we capture the information 

about the total number of execution of BCD, but 

loose the important context information. So we need 

some combination of the described approaches. 

3.1.2 Call Context Map Structure 
Call Context Map (CC-Map) structure is designed to 

address issues depicted in the previous subsection. 

The higher level of the CC-Map is a hash-table 

containing references to MethodProfile nodes. 

MethodProfile node stores a total counter for the 

method executions and references to the nodes



 

Figure 3. Call Context Map fragment

representing information about calls from this method 

to the others.  

The Callee nodes contain accumulated counters for 

the total number of calls from the concrete caller to 

the concrete callee, in any context. Additionally, the 

tree of reference nodes is constructed for every call 

sequence. These Ref nodes contain counters for calls 

done in the given context and references to the nodes, 

which store general information about the call. 

A fragment of CC-Map structure is shown on Figure 

3. Let method A calls method B, B calls C, and C 

calls D. Every caller profile refers to CallSite node 

that contains general information about the call site – 

offset, reference to the caller profile, etc. CallSite 

node refers to one or more Callee nodes, which store 

call counters and, in turn, refer to the profiles of 

callees. CallSiteRef and CalleeRef  nodes refer to the 

general  CallSite and Callee nodes and CalleeRef 

nodes store the context counters. Every node 

representing general call information has Context 

references to the nodes, which describe a context of 

the call. 

3.1.3 Advantages of CC-Map structure 
CC-Map accumulates a total call count for every 

caller-callee pair and at the same time it allows 

retrieving information concerning calls in the specific 

context. This information is easily available: a 

compilation controller may lookup contexts by the 

Context references when some counter exceeds a 

threshold, as well as move up and down through a 

call chain. 

From the CallSite and CallSiteRef nodes a controller 

can know whether the call has probably one target 

(and so consider devirtualization). CallSite node 

provides this information for all calls from a given 

site, CallSiteRef – only for calls done in a given 

context. 

CC-Map is a rather compact structure. Nodes don’t 

store duplicate data. CC-Map allows quick updating, 

as well as rather quick removing of nodes, which 

appear cold. Compilation controller need not perform 

additional analysis of trees to get information 

necessary for good decision: it can only follow 

references. 

Figure 4 shows an example: a simplified view of CC-

Map for the calling sequences presented on Figure 2a 

and 2b. The CallSite nodes are omitted for simplicity, 

as there is only one call site for each method in this 

example. You can see that a bi-directional association 

exists between a node with general information about 

method call and nodes representing the same call in 

the different contexts. When an event of a total 

counter exceeding threshold takes place, a 

compilation/recompilation controller can quickly 

look through the contexts to make an appropriate 



 

Figure 4. CC-Map for Fig. 2 examples. Bold arrows indicate references from nodes describing call in a 

given context, thin arrows indicate references form a general information node to call-in-context nodes 

(this association is represented by “Context” items on Fig. 3). The roots of the trees are MethodProfile 

nodes containing the total counters for method executions

compilation decision (for example, consider the 

common callers for de-virtualization or inlining too, 

especially if only one callee has been detected at the 

correspondent call sites so far). When analyzing a 

frequently executed call sequence a controller can 

browse all general call information nodes and access 

other contexts from them. It can move up and down 

the call sequence representation (see Fig. 3) to gather 

all the information about callers and callees that 

might affect a recompilation strategy choice. 

3.1.4 CC-Map filling and updating 
When a sample is being taken, all the data initially is 

written into a buffer. The stack lookup starts from the 

top of the stack and ends at the outermost frame or at 

the first managed method activation record that has 

already been visited by profiler. The profiler marks 

managed method activation records when looks them 

up (the JIT-compiler is configured to push the 

additional slot on the stack for this purpose), so 

during the following passes it can distinguish the new 

frames from the old ones. When the profiler 

encounters an old (marked as already visited) frame, 

it records this frame data (as it is needed to register a 

new call from the frame) and stops looking up the 

stack. 

So, at the start of the buffer we have a reference to 

the method correspondent to the activation record at 

the top of the stack (i.e., most inner call), and at the 

end of the buffer – the outer caller (or the innermost 

call that hasn’t returned from the previous lookup) 

reference. 

The pseudocode for sample buffer processing looks 

as follows: 

For(int i = 0; i < end_of_sample; i++) 

{ 

   update MethodProfile(buf[i]); 

   if (i > 0) 

   { 

      update Callee(buf[i],buf[i-1]); 

   } 

   for (j = i-2; j>=0;j--) 

   { 

      update CalleeRef(buf[j]); 

   } 

} 

The real code is a little more optimized and a little 

more complicated, but the underlying algorithm is the 

same. 

Profiling Algorithm 
Maintaining such a complex structure as the CC-Map 

requires some effort. Algorithm described in the 

previous section may take a long time to complete. 

But we cannot afford to stop user threads for 

observable intervals because of profiling. 

The solution we have chosen is to separate taking 

sample from thread stack from storing the sample 

data in the CC-Map. For this purpose we use two 

profiler worker threads, as well as thread-local and 



global queues for samples waiting for the profiler to 

process them. 

Profiling job is launched by the MarkThreadsWorker 

system thread which marks every live managed 

thread to make it know that it should take a sample 

when reaches a safe point. Every live managed thread 

has its own sample buffer and its own short samples 

queue. The sample is written into the thread local 

buffer and pushed into the thread local queue. When 

local queue length exceeds a threshold (rather low, 

now 10) all its contents is pushed to the global queue. 

This schema is aimed to decrease the need to grab a 

global queue lock, and thus to decrease possible 

pauses caused by waiting for the lock. Little delay in 

samples processing is not critical because only large 

numbers are considered when making compilation 

decisions. 

The CC-Map manager thread periodically grabs the 

global queue lock, takes out a bunch of samples and 

put them into its own queue. Then it releases the lock 

and proceeds with processing samples without hurry. 

Global queue hashes samples by thread id so the CC-

Map manager thread can return the processed sample 

buffers back to their thread so that it need not to 

allocate new memory. Local thread buffer grows 

automatically when needed, queued samples buffers 

grow then they need to adapt to local buffer size. So 

when threads get back their own buffers, previously 

queued, these buffers are likely to have appropriate 

size. If the thread is already finished when CC-Map 

manager returns processed sample buffers for it, this 

chain of buffers is put aside to be used by next new 

thread. 

Tuning Sampling Interval 
The profiler is, self-tuning, it adapts an interval of 

taking samples to the characteristics of environment 

where it runs. To do this it uses a simple heuristics: it 

tracks how often the same activation records appear 

on the top of the stack. It doesn’t take much effort or 

time: as the profiler already distinguishes between 

visited and not visited frames and stops at the first 

visited, we need only to reflect this condition in a 

sample and check whether this frame is the first in a 

sample (i.e. it is taken from the top of the stack) when 

processing the sample. If so, a special counter is 

incremented. 

There are two threshold values defined: maximum 

percentage of repetitions and minimum percentage of 

repetitions. CC-Map manager thread evaluates actual 

percentage of repetitions (of activation record 

appearance on the top of the stack) every 1000 

samples (more precisely, than processed samples 

portions is more than 1000, because the manager 

thread handles a bunch of samples in every pass). If 

percentage of repetitions is lower then minimum 

threshold, it is considered too low and sampling 

interval decreases. If percentage of repetitions is 

higher than maximum threshold, the sampling 

interval increases. 

4. INTEGRATION WITH ROTOR 
Rotor has a built-in mechanism for walking the stack, 

which is used for such purposes as exception 

handling and security checks[Stu03]. It involves 

several methods and functions of virtual machine and 

among them the StackWalkFrames method of the VM 

Thread class, which we use to take samples. 

StackWalkFrames takes a function to execute on 

every encountered stack frame as a parameter, so its 

work is easily customizable. The advantage of using 

it is that it already knows how to distinguish managed 

method frames from unmanaged method frames, can 

recognize context transitions (e.g. across application 

domain boundaries), encapsulates calls to Rotor 

facilities to get metadata references and offsets, and it 

provides a convenient interface to do jobs on the 

stack.  

We make managed threads call StackWalkFrames 

method at, so called, “safe points”, building upon the 

other intrinsic Rotor mechanism – trapping threads 

when they know that it is safe to suspend now. This 

mechanism has been originally used to trigger 

garbage collection. Checks for a suspension request 

have been inserted by the JIT-compiler at back edges 

and everywhere where the next piece of code may 

take long time to execute[Stu03]. Such checks are 

also performed by some of runtime helper functions 

extensively used in Rotor. We utilize this mechanism 

and add additional check points at the entry of every 

method. At that new check points we test only for the 

need to take sample. 

We also used the SSCLI core HashMap class to 

construct the CC-Map in Rotor. SSCLI HashMap 

class implements a hash table used by VM for its 

internal needs. It hashes pointer type values by the 

pointer type keys (so allows storing profile objects by 

the pointer-to-metadata keys), implements locking for 

insert, delete and lookup, and takes care of cleaning 

up itself. It is just what we need. So we choose 

HashMap as a hash table to store MethodProfile 

references at the highest level of CC-Map and as a 

hash table to hold queues of samples waiting for 

processing in the global samples store. 

5. RESULTS 
We tested our profiler on SSCLI 1.0. To measure 

overhead and accuracy of profiling we used tests 

from a suite supplied with SSCLI. To estimate 

overhead we chose a set of base tests from bcl\system 



and bvt subdirectories and tests from bcl\threadsafety 

subdirectory of Rotor tests directory. To estimate 

accuracy we used tests from bcl\threadsafety 

subdirectory, where multiple threads execute the 

same code. As measures we used statistical 

correlation of the total executions counters stored in 

MethodProfile nodes and Arnold & Ryder overlap 

percentage[Arn02] for the whole tree comparison. 

Overlap percentage of trees T1 and T2 is computed 

as follows:  

∑N in T1,T2 [min ( Weight (NT1), Weight(NT2)] 

where Weight (NTx) is:  

value(NTx)/∑N in Txvalue(N), 

N is a node holding a counter, value is a value of the 

counter. When N is not found in Tx (thought it exist 

in Ty and thus in TxTy set), it is assumed that 

value(NTx) = 0. 

For performance test the low threshold for repetitions 

(cases when the same method appears on the top of 

the stack) was set to 1%, high threshold for 

repetitions was set to 15%. For the correlation and 

overlap measurement tests the self-tuning was turned 

off, because it can affect the correlation results 

distinctly for short-running tests, as those we used. 

However the great deal of these differences is 

produced at the interval when the profiler is tuning, 

so such results do not reflect the real picture in steady 

state. Logging of sample interval changes in the 

process of tuning revealed that the sample interval 

becomes stable after 1-2 changes. We measured 

correlation and tree overlap with different sample 

intervals (with self-tuning turned off) and the best 

results (95-99%) were obtained with the same 

interval that the profiler found automatically. 

In accuracy test we recorded and compared 

executions counters and the whole CC-Maps from 10 

subsequent runs. The results of every run were 

compared with results of every other and an average 

value was computed. 

To make the CC-Map accessible even after the VM 

was stopped running, we dumped the CC-Map (in the 

fastchecked mode) to an XML file at VM shutdown. 

Then original CC-Maps were restored from XML 

representation and compared (in XML dump of CC-

Map managed methods are identified by the full name 

and signature to make comparison possible, though at 

runtime they identified only by pointer to metadata). 

Table 1 shows the average correlation for 10 

subsequent runs of the same test and average tree 

overlap percentage. All the tests are from 

bcl\threadsafety suite.  

Test Name  
Correlation, 

% 

Overlap, 

% 

co8545int32 99 97 

co8546int16 99 92 

co8547sbyte 99 94 

co8548intptr 99 98 

co8549uint16 99 95 

co8550uint32 99 95 

co8551byte 99 97 

co8552uintptr 99 97 

co8553char 99 96 

co8555boolean 99 96 

co8559enum 98 75 

co8788stringbuilder 99 67 

co8827console 99 77 

co8830single 99 98 

Table 1. Average correlation for total executions 

counters and overlap percentage extracted from 

comparison of results of 10 subsequent runs   

We can see that though the correlation of simple 

execution counters is always good (98-99%), overlap 

percentage sometimes appears lower than 80%. We 

think, however, this can be probably explained by the 

fact than the tests themselves were very short. 

Tests were run on Celeron433 processor, 256M 

RAM. Sampling interval was set to 10ms.  This is 

rather short interval for this hardware configuration 

and for long-running programs in may be longer. 

However, the tuning mechanism can adjust the 

interval well. When testing we started from interval 

50ms, and for the tests, which performed bad with 

such an interval, the profiler made it less. For the 

tests, which performed well, the interval remained 

unchanged. We see also in Table 1, that for some 

tests accuracy is even redundant. 95-97% would be 

enough to consider results statistically significant. For 

the cases when we can get such accuracy with longer 

interval, it will not decrease (or it can even increase if 

the initial interval appears too short). 

The profiling overhead was measured on the free 

build against unchanged Rotor free build, on the same 

hardware configuration, on the tests from bcl\system, 

bvt, and bcl\threadsafety subsets of Rotor core test 

suit. Initial sampling interval was set to 50ms. Tuning 

was turned on. Tests were run 2 times, and the total 

overhead did not exceed 3%. In the future we intend 

to consider automatic turning off tuning after a 

certain period of time so that to lower overhead. 
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