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ABSTRACT 

 

Implementation of the MPI standard on heterogeneous platforms is desirable because it permits using resources 
discarded by existing MPI implementations of homogenous systems. This paper describes PMPI, as partial 
implementation of the MPI standard on a heterogeneous platform. Unlike other MPI implementations, PMPI 
permits MPI processes written in different programming languages to run on multiplatform system. PMPI is built 
on top of .NET framework. PMPI can span multiple administrative domains distributed geographically. To 
programmers, the grid looks like a local MPI computation. The model of computation is indistinguishable from 
that of standard MPI computation. This paper studies the implementation of PMPI with Microsoft .NET 
framework and MONO to provide a common layer for a multiprogramming language multiplatform MPI 
application. We show the obtained results using PMPI, and compare them to MPICH2. The obtained results will 
show that the use of .NET framework for PMPI is feasible and can be optimized for performance. 
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1. INTRODUCTION 

 
For many years, parallel computation was always 
an attractive alternative for obtaining high-
performance computing [Dongarra et al. 2003] 
[Foster 1995]. With the use of multiple 
computational nodes interconnected by a high-
speed network, clusters of computers are the most 
common platform of parallel machines. The recent 
introduction of multi-core microprocessors will 
result in parallel computers becoming available on 
desktops.  
MPI is perhaps the best known standard used in 
parallel computation allowing nodes spread across 
the network to collaborate to achieve a common 
computational goal [Andrews 2000] [MPI Forum 
1994].  

The limitation of MPI is two fold. On the one side, 
most existing MPI implementations, such as 
MPICH2, execute only on homogeneous platforms 
[MPICH2 2006]. Accordingly, idle cycles that are 
spread across a variety of machine architectures and 

operating systems across networked PCs, are 
discarded because of the lack of an MPI that 
executes on a heterogeneous platform. These idle 
cycles are increasingly being recognized as a huge 
and largely untapped source of computing power 

On the other side, almost existing MPI 
implementations use C, C++ or FORTRAN 
programming language. Accordingly, researchers 
and programmers who collaborate on the solution 
of the same problem need to stick to one of the 
languages that supports the MPI library they intend 
to use. 

The implementation of MPI that can tap into those 
idle resources on heterogeneous platforms is 
desirable because it allows researchers and 
programmers, who need high performance 
computing and have available heterogeneous 
platforms around their campus, to use all available 
resources [Kelly, Roe and Sumitomo 2002][ Kelly 
and Roe 2002][ Kelly and Mason 2003]. Having the 
ability to use MPI on heterogeneous systems 
maximizes computational power resources.  
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In addition to using MPI on a heterogeneous 
platform, programmers want to use a variety of 
programming languages in their computational 
program. In the same MPI computation, 
programmers want nodes to run applications written 
in different programming languages simultaneously 
using MPI standards. This becomes a merit when 
we have multiple programmers participating in the 
solution of a unique problem, where each 
programmer is writing a program that runs on a 
separate node such as same data multiple program 
solutions. This permits programmers to explore 
their abilities and skills in their preferred 
programming language, and to use the 
programming language that best suit the solution of 
the problem. 
This paper studies the feasibility of implementing 
MPI standard on a heterogeneous platform by 
implementing the component PMPI. PMPI aims to 
provide programmers and researchers with a 
framework that takes care of a transparent 
communication infrastructure between the 
heterogeneous nodes in a MPI computation in a 
robust and secure manner. The programmer is left 
to concentrate only on the application specific 
computational aspects. We take advantage of the 
.NET framework to provide application 
programmers with a choice of the programming 
language, all of which can use the same PMPI 
framework classes. 

There are different choices that can be made to 
implement the PMPI component. We choose the 
.NET framework [Ritchter and Balena 2002] for 
this purpose as the first tentative and used .NET 
Remoting [McLean 2003] [Rammer 2002] as the 
communication infrastructure for PMPI. In this 
implementation, PMPI acts as a remote-object 
based framework for creating MPI parallel 
applications. The framework is built using the 
extensibility features of the .NET Remoting 
framework. 

Unlike the Java virtual machine, the .NET runtime 
is designed to be language independent. 
Accordingly, developers can create their 
applications using any language that targets the 
CLR such as: C#, Visual Basic, Visual C++ or one 
of many other .NET languages such as Eiffel, Perl, 
Cobol, Component Pascal, Smalltalk, or Fortran 
[Ritchter and Balena 2002]. Today there are about 
twenty six different programming languages that 
target the .NET framework [Ritchter and Balena 
2002]. PMPI enables programmers to program in a 
normal MPI fashion, without being concerned what 
platform or programming language other 
participating nodes will run.  

The main contribution of this paper is to study the 
feasibility of implementing MPI on a virtual 
machine and show performance results compared to 
other existing MPI implementation. This offers 
programmers who have heterogeneous systems with 
a library that can reap the available computational 
power on available machines. 

The remainder of this paper is organized as follows. 
Section 2 describes the architecture of PMPI. 
Section 3 describes the programming model of 
PMPI. Section 4 explains the sample application 
used in the tests. Section 5 describes the results and 
some preliminary performance figures. Finally, 
section 6 concludes and discusses future and related 
works. 
 

2. ARCHITECTURE 
PMPI architecture follows the standard 
structure of a layered networking architecture. 
PMPI is composed of three components. The first 
component is PMPI which contains MPI 
implementation. The second one is the agent that 
runs on each node participating in the MPI 
computation. The agent is responsible for starting 
MPI programs on nodes, and offers administrative 
information about nodes, in addition to information 
about administrative domains. The third component 
is PMPI Gateway, or PIP (Platform Interface 
Portal). The PIP serves as a gateway to 
administrative domains to overcome problems 
raised by firewalls and NAT separating different 
administrative domains.  

Each administrative domain has a PIP known to all 
agents. Inside PMPI component, there is an address 
resolution layer that is transparent to programmers. 
This layer decides on whether to direct MPI calls 
directly to other nodes or to their corresponding 
PIPs. This permits programmers the freedom to 
concentrate on their problem rather than 
communication implementation.  

 
Figure 1: Four nodes using PMPI 
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Figure 1 shows a basic PMPI infrastructure. The 
figure shows a structure with four nodes running on 
one administrative domain connected by local 
Ethernet network. The processes may be running on 
different platforms, and each process may be 
written in a different programming language.  
PMPI communication infrastructure is constructed 
on .NET Remoting, and in turn, is based on 
TCP/IP. .NET Remoting can be customized to 
support other protocols [Rammer 2002]. 

 

  
Figure 2: PMPI layered view 

 

Figure 2 shows PMPI component layers. On the 
top, we have the MPI interface that is available to 
programmers. When a MPI call is made, it passes 
through the address resolution module to check 
which administrative domain the destination node 
belongs to, and what communication method is to 
be uses to reach the node that costs less. For 
example, nodes behind firewalls may be reachable 
only through port 80 using the SOAP protocol 
which is firewall friendly in contrast to the binary 
protocol. On the other hand, SOAP consumes more 
network bandwidth and is less efficient than binary 
formatting [McLean 2003]. 

 
Figure 3 shows a sketch of a MPI computation 
spanning two administrative domains where each 
administrative domain is located behind a firewall. 
In this figure, MPI calls made from one 
administrative domain to the other are done through 
the PIPs of the administrative domain. The PIP will 
serve as a proxy on behalf of nodes making the call. 
The scenario in figure 3 assumes that we have 
barriers in both administrative domains. In other 
words, nodes in administrative domain 1 cannot 
reach nodes in administrative domain 2 directly 
using remote object calls. Instead, they should use 
the PIP proxy service to exchange messages. 

 
Figure 3: Using PMPI on two administrative 
domains 

 

To better understand the idea, let’s take an example 
where node A in administrative domain one will 
make MPI call to node B in administrative domain 
two. The address resolution layer of PMPI running 
on node A detects that node B is running on another 
administrative domain and there is no way to reach 
node B directly because of a firewall or NAT. The 
address resolution layer directs the call to the PIP 
node of administrative domain one. The PIP in turn 
directs the MPI call to PIP of administrative domain 
two. The PIP of administrative domain two receives 
the call and directs it to node B of its domain. If the 
call is synchronous, then the PIP of administrative 
domain one block node A until it receives a 
notification from PIP of the other administrative 
domain that node B has received the call. The PIP 
acts as proxy on behalf of the nodes in their 
corresponding administrative domain. 

The rest of this section is divided into two 
subsections. The first describes MPI standard. The 
second describes PMPI architecture and constructs. 
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2.1 MPI: Message Programming Interface 
In the message-passing library approach to parallel 
programming, a collection of processes executes 
programs written in a standard sequential language 
augmented with calls to a library of functions for 
sending and receiving messages. MPI is a complex 
system. In its entity, it comprises 129 functions, 
many of which have numerous parameters of 
variants [Foster 1995]. 

In the MPI programming model, a computation 
comprises one or more processes that communicate 
by calling library routines to send and receive 
messages to other processes. In most MPI 
implementations, a fixed set of processes is created 
at program initialization, and one process is created 
per processor. However, these processes may 
execute different programs. Hence, the MPI 
programming model is sometimes referred to as 
multiple program multiple data (MPMD) to 
distinguish it from SPMD model in which every 
processor executes the same program. 

Processes can use point-to-point communication 
operations to send a message from one named 
process to another; these operations can be used to 
implement local and unstructured communications. 
A group of processes can call collective 
communication operations to perform commonly 
used global operations such as summation and 
broadcast. MPI’s ability to probe for messages 
allows asynchronous communication. Probably 
MPI’s most important feature from a software 
engineering viewpoint is its support for modular 
programming. A mechanism called a communicator 
allows the MPI programmer to define modules that 
encapsulate internal communication structures 
[MPI Forum 1994]. 

 

2.2 PMPI Basic Architecture 
PMPI is built on top of .NET framework. We are 
using Microsoft .NET framework 1.1 for Microsoft 
Windows and Mono 1.0.5 for Linux. Although 
Mono can run on Power PC, BSD and other 
operating systems and architectures, we based our 
initial implementation on Windows and Linux 
operating systems although this can be expanded to 
other operating systems without any modification in 
the code. 

The initial implementation of PMPI was devoted to 
implement functionality rather that performance. 
Because of this, we selected higher level 
implements of the .NET framework to implement 
PMPI. For the communication layer, we used .NET 
Remoting which is based on remote object 
communication. The classes that make up the .NET 

framework are layered, meaning that at the base of 
the framework are simple types, which are built on 
and reused by more complex types. .NET Remoting 
is one such complex type which in turn is built as 
layers where each layer can be customized to 
programmer needs [Jones et al 2004]. This adds 
extra overhead compared to using simple raw 
classes such as socket class [Rammer 2002]. 

We used C# as the programming language. All 
.NET programming language compilers targets the 
CTS (common type system) of the framework. C# 
compiler helps the programmer adhere to CTS 
types by setting the “CLSCompliantAttribute” 
attribute to true [Bock 2003]. In this way, the 
compiler generates an error whenever you try to use 
a non CTS type. This guarantees that the generated 
code is accessed by all .NET programming 
languages since all .NET programming languages 
target the CTS [Ritchter and Balena 2002]. 

Each node participating in the MPI computation 
should have the .NET framework installed. Nodes 
running Windows operating systems should install 
Microsoft Framework 1.1 on their machines. Nodes 
running Linux should install Mono 1.0.5. Although 
there are newer versions of the framework for both 
platforms, PMPI has been tested on earlier 
frameworks. 

In addition to the framework installed on the 
machines participating in the MPI computation, the 
nodes should have PMPI installed on each node. 
The initial implementation of PMPI needs to have 
bidirectional communication between the nodes. 
Accordingly, firewalls can cause problems. The 
implementation of PIP is not yet implemented. 
Initially, PMPI implemented 20 MPI functions. 
Those functions cover basic, asynchronous, 
collective and modular commands. When MPI 
computation starts, each node registers PMPI object 
at a known end point to other nodes using .NET 
remote object. With .NET remoting, the framework 
creates a thread pool to receive the calls made 
against the remote object. When node A sends data 
to node B within the same administrative domain, 
node B’s PMPI will receive the data and releases 
the calling object immediately, node A in this. 
When node B calls MPI_Receive, PMPI will check 
to see if there is a message with the corresponding 
tag and source. If it finds a corresponding message, 
then a pointer to the message is passed to 
MPI_Receive, and the call returns immediately in 
node B. If no corresponding message is found with 
the requested tag-source, the call in node B is 
blocked until node B receives the requested 
message. If node A uses synchronous MPI_SSend, 
then PMPI layer on node A blocks until node B 



sends a release signal after the process in node B 
makes a call to MPI_Receive. 

PMPI uses a hash table data structure to control 
received message. The key of the hash table is a 
combination of the source, tag, and communicator 
ID. The value of the hash table points to a queue 
whose elements contains a data structure composed 
of the received message, message size, message 
type and synchronization objects that the receiving 
thread will block on. When the node calls 
MPI_Receive with a particular tag, source and 
communicator, PMPI checks the hash table for 
pending messages in the queue. If it finds a 
message, it pops the message from the queue in a 
FIFO manner and wakes up the thread using the 
synchronization objects found in the read queue 
element. When the waked thread terminates, the 
message is passed to the MPI_Receive call. Note 
that if the call is made using MPI_Ssend, which is a 
synchronous send, the receiving thread will block 
the sending thread until it is waked up again by 
MPI_Receive in the manner explained above. If it 
comes that MPI_Receive is called before a 
MPI_Send and PMPI finds the queue empty, then it 
blocks the call on synchrozination objects, enqueue 
the call with the synchronization objects in the 
queue whose pointer is stored in a hash table. Later, 
when PMPI is invoked by MPI_Send, PMPI checks 
first if a pending MPI_Receive exists. If it find a 
pending receive, then it pops the queue, wakes the 
thread using the popped synchronization objects 
and returns.  

When it comes to collective operations, PMPI uses 
a thread pool to perform the collective task. PMPI 
uses a simple algorithm for collective tasks. Each 
communicator has a master node known to all 
participating nodes. The communicator master node 
is responsible for coordinating the collective calls. 
In other worlds, its the master communicator node 
who decides when the collective call is done. PMPI 
implements this by using a thread pool in the 
communicator master node. When the collective 
call is made, PMPI checks if the node is the master 
in the target communicator. If it is not, then it uses a 
methodology similar to Send_Receive explained 
before. If it finds the node to be the communicator 
master, then it creates one thread for each node in 
the communicator, and blocks on the 
synchronization object. When the thread in the pool 
terminates, it verifies if other threads in the pool 
had terminated; if not, then the thread blocks on a 
synchronization object. If the thread happens to be 
the last one, then the thread wakes all other threads 
using the synchronization object. By this means, the 
communicator master manages the collective 
operation. 

The agents will be a separate component. For MS 
Windows, the agent is implemented as Windows 
Service. The agent will be responsible for starting 
the programs on participating nodes. In addition, 
the agent will supply managing data about the 
nodes themselves such as available memory, CPU 
load, speed, administrative domains and other 
managing data. Today, most operating systems 
implement the Web-Based Enterprise Management 
(WBEM), which is an industry initiative to develop 
a standard technology for accessing management 
information in an enterprise environment. WMI is 
the Micorsoft implementation of WBEM.   

The PIPs are part of PMPI architecture but are not 
yet implemented. PIPs will be implemented using 
Web Services. The remote object model explained 
will be substituted by Web Service model. The PIP 
will be a gateway on behalf of the calling node. The 
architecture and implementation of PIP will 
consider having two communicating PIPs on behalf 
of the send and receiving nodes.  

 
3. PROGRAMMING MODEL 
The programming model is as simple as any 
existing MPI implementation. The master node 
initializes the MPI computation using a XML 
computation file. PMPI is object based. Therefore, 
the MPI functions should be called as object 
methods.  

When PMPI is initialized, it publishes a remote 
object at a known end point. Each participating 
node knows the address and port of all other nodes 
in the MPI computation. When the program calls a 
MPI function, PMPI receives the function call and 
transmits it to the corresponding node after 
resolving its address internally. Although current 
implementation did not target nodes running behind 
NATs and firewall, PMPI layered implementation 
makes it easy to build semantics to solve the 
complications raised by firewalls and NATs with 
out programmer awareness. This helps the 
programmer to devote his efforts on programming 
rather than MPI communications. Future works will 
customize the real proxy of the .NET Remoting 
object to intercept message calls and select the 
destination accordingly. 

We wrote applications in VB.NET, C#, managed 
C++, and J#. We ran each application on a different 
node. All four nodes ran under Microsoft Windows 
XP operating system. For MONO running on Linux 
Redhat 9, we were limited to C# since it is the only 
existing non-beta compiler. For simplicity, we used 
only the above programming languages, but this 
can extend to any available .NET programming 
language. The MPI computation ran as if programs 



at all nodes were written in the same programming 
language. 

 
Figure 4 shows part of the sample application 
written in C# where the code initializes an MPI 
computation, gets its task Id within 
COMM_WOLRD, gets COMM_WORLD size, 
sends data to “dest” node and later receives data 
from “dest” node. Note that the MPI functions are 
methods of a PMPI object called “obj”. These 
methods are either static or instance methods. Static 
methods of PMPI enable us to write multithreaded 
programs running on a machine where all threads 
use the same PMPI object. Also, it is possible to 
start multiple PMPI objects where each object 
participates in a different MPI computation with out 
the need to MPI communicators. 

 
4. SAMPLE APPLICATION 
We used as a sample application the master-worker 
model for matrix multiplication (A x B = C). The 
results of this sample are compared to MPICH2 for 
Windows in the next section. 
The master (task Id 0) sends matrix B to all 
participating nodes (workers), and distributes the 
rows of matrix A into worker nodes evenly. 
Workers perform the multiplication and send back 
the result to the master node. Master node 
accumulates the results from all workers into matrix 
C. The sample application was taken from the 
examples that install with MPICH2. In this sample 
application, the master does not participate in the 
MPI computation. It just sends the data to workers 
and gets back the results into matrix C. 

 
5. RESULTS 
The performance tests are done with the sample 
application written in C#. We set the number of 
columns in matrix A to 1200 and the number of 
columns of matrix B to 500. We varied the number 
of rows of matrix A to 2400, 4800, 9600 and 19200 
respectively. For each problem size, we executed 
the application on one to all six nodes.   

The tests are executed in three sets. The first set of 
tests is the results obtained executing the sample 
application on a homogeneous platform corporate 
network. The second test is done on the same 
corporate network with both PMPI and MPICH2. 
The last test is done on a cluster using 
homogeneous and heterogeneous platforms.  

 

5.1 Results using Corporate Homogenous 
Platform 
We tested the application first on standalone 
machines with out using parallel MPI computation. 
We rewrote the application taking out all MPI 
commands and compiled them using Microsoft 
Visual C++, Microsoft C# and MONO C# 
compilers. 
The corporate network was composed of AMD 1.5 
GHZ, 512 KB cache CPUs with 256 MB RAM and 
40 GB HD. The nodes run under Windows XP. One 
node had dual operating systems: Windows XP and 
Redhat 9. The obtained results are as follows. C# 
managed code application executed 27% slower 
than C++ application on machine running Windows 
XP or Windows 2003 operating system. On 
machine running Linux Redhat 9 with mono .NET 
framework, C++ executed 10 times faster than C#!  
Comparing .Microsoft NET C# running on 
Windows XP to MONO 1.05 C# compiler Running 
under Linux Redhat 9, Microsoft C# executed 5 
times faster than MONO C#. 

Before going any further, let me clarify some 
details about array access in managed world and 
some performance issues. Each time an element of 
an array is accessed, the CLR ensures that the index 
is within the array’s bound. This prevents you from 
accessing memory that is outside the array, which 
would potentially corrupt other objects. If an 
invalid index is used to access an array element, the 
CLR throws a System.IndexOutOfRangeException 
exception.  

The index checking comes at a performance cost. If 
we have confidence in our code, we can access an 
array without having the CLR perform index 
checking. This feature is not allowed in all .NET 
languages and is not CLS complaint. Accordingly, 
only .NET languages that have this feature will 
benefit from fast array access such as C#. 
To give an idea on how much gain we get using fast 
array access, we show the following results. C# 
using managed array access executes 20% slower 
than C# using fast array access on the machine 
running Windows XP. On Linux, C# using 
managed array access, executed 5 times slower than 
C# using fast array access. As we note, the 
performance gain in Linux is huge (500%). 

Figure 4: Part of the sample application 

MPI obj = new  MPI(); 
obj.MPI_Init(args); 
id=obj.MPI_Comm_Rank(MPI_Comm_World); 
tasks=obj.MPI_Comm_Size(MPI_Comm_World); 
obj.MPI_Send(offset, 1,           
             MPI_Integer, dest, mtype,  
             MPI_Comm_World); 
obj.MPI_Send(rows, 1, MPI_Integer, dest,  
              mtype, MPI_Comm_World); 



The problem with fast array is that not all .NET 
languages support it since it is not a CLS compliant. 
In addition, it is harder to code than managed array 
access since it uses pointers. Accordingly, the 
benefit of using fast array is limited to only a subset 
of .NET programming languages. 
Later, we executed the application using both 
MPICH2 and PMPI using managed array access 
with PMPI. The sample application running on 
PMPI nodes was written with C#, Java.NET, 
managed C++ and VB.NET. The compiler choice 
did not affect the result. We used a various 
combination of the programming languages and we 
got the same results. The results are shown only for 
Windows OS since we used MPICH2 for windows.  
In figures 5, we show a comparison between PMPI 
and MPICH2 for different problem sizes executing 
on 6 nodes. The results demonstrate that PMPI 
executed slower than MPICH2 between 40% and 
70%. 

Figure 6 shows the linear relation ship between the 
number of nodes and the execution time. As we 
increase the participating nodes, the execution time 
decreases linearly. 

 
Figure 5: comparison between PMPI and MPICH2 

 
Figure 6: Execution time as a function of 
participating nodes  

 

5.2 Results using cluster with a 
Heterogeneous Platform 

The cluster, named BIO, is composed of 8 nodes 
each with dual 2.0 GHZ, 512 KB cache CPUs with 
512MB RAM and 40 GB HD.  

As before, we tested the application first on a 
standalone machines with out using parallel MPI 
computation. We rewrote the application taking out 
all MPI commands and compiled them using 
Microsoft C# compiler and mono C#.  

Later, we executed the application on the cluster 
using up to six nodes where nodes varied between 
nodes running Windows 2003 server and nodes 
running Linux Redhat 8. The result is shown below 
in figure 7. As the figure shows, Microsoft .NET 
platform performed better than MONO .NET 
framework. When we mixed the nodes between 
Windows and Linux operating systems, PMPI 
executed with performance equivalent to the 
average of executing on each platform 
independently.   

 
Figure 7: PMPI on a heterogeneous platform 

5.3 Result analysis 
As shown in section 5, PMPI executes as a linear 
function of the problem size. The execution time 
increased linearly as we increased the matrix size.  
Also, as we increase the number of nodes, the 
execution time decreased almost linearly. 

Although PMPI executes slower than MPICH2, the 
main overhead is a result of managed array access 
and the use of high construct communication 
construct of the .NET framework. This overhead 
was expected and is subject for future work. 

In addition, we detected that the use of thread 
pool within the program structure, degraded PMPI 
performance in a master-worker model. This loss of 
performance resulted from the fact that the 
operating system has full control of the thread pool 
which resulted in activating threads to receive the 
results from nodes while other threads were still 
sending data to other nodes. With a custom thread 
pool, PMPI will have full control on the executing 
thread, and in turn, can block receiving threads 
while PMPI is sending. This will improve a lot 
performance especially when we have large number 
of nodes. This happens because as we increase the 
number of nodes, we have greater the tendency of 
nodes completing their jobs before the master. 
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Moreover, there are some other code tuning of 
PMPI that can improve performance such as 
reducing .NET framework boxing, a mechanism 
that .NET framework exchange data between the 
allocated stack and managed heap. Boxing in .NET 
managed code is known to have performance cost 
and minimizing it can improve performance a lot. 

 

6. RELATED WORKS 
In this section we discuss related work the can be 
use parallel computing on a multiplatform. In 
[Fer05], experiment with implementation of parallel 
programs using C# running on Unix and Windows 
is done. In [Will01], a binding between an already 
implemented MPI interfaces and C# is done. In 
[Car00], a Multiplatform MPI implementation is 
done for JAVA programming language. However, 
none of the above works have focused and worked 
with a Multiprogramming Language MPI.  

  

7. CONCLUSION AND FUTURE 
WORKS 
The first implementation of PMPI was shown to be 
feasible and it is possible to execute MPI standards 
on a multi-language and multiplatform systems. 
Although the first implementation showed that 
PMPI is slower than MPICH2, the difference is 
explained by known issues and these issues can be 
eliminated. Care should be taken when using a 
heterogeneous system including Linux with 
managed array access. As shown in the preliminary 
results, mono performs very poor with managed 
array access. In such a case, we should consider 
using fast array access. 

The next step in this project is to span PMPI to 
multiple administrative domains that span 
geographic area across the internet. In addition, 
lower communication constructs can improve 
performance in addition to use a custom thread pool 
to manage threads instead of the operating system 
thread pool. This will give us a complete control on 
the threads. Also, we will do a comparison between 
JavaMPI to PMPI . 

  

REFERENCES 
[And00a] Andrews, G.R. Foundation of 

Multithreading, Parrallel, and Distributed 
Programming, pp 115-243, 2000. 

[Rit02a] Ritchter,J. and Balena,F. Applied 
Microsoft Dotnet Framework Programming in 
Microsoft C# 2002. 

[Fos95a] Foster, I.. Designing and Building Parallel 
Programs, pp  275-310, 1995 

[Don03a] Dongarra,J. and Foster,I. and Fox,G. and 
Gropp, W., Kennedy,K. and  Torczon,L. 
White,A. Sourcebook Of Parallel Computing. 
2003. 

[Ram02a] Rammer, I. Advanced Dotnet Remoting 
in C#.2002. 

[Boc03a] Bock,J. and Barnaby,T. Applied Dotnet 
Attributes. 2003  

[East04a] Easton, M.J.  and King, J. Cross-Platform 
Dotnet Development. 2004  

[Jon04a] Jones, A., Ohlund,J. and Olson, L. 
Network Programming for the Microsoft 
Dotnet Framework. 2004. 

[Ard02a] Ardestani, K. and Ferracchiati, F. and 
Gopikrishna,S., Redkar,T., Sivakumar, S., 
Titus, T.  Visual Basic Dotnet Threading. 2002. 

[Sha03a] Sharp, J. and Jagger, J. Microsoft Visual 
C# Dotnet. 2003. 

[McL03a] McLean, S. and Naftel,J.  and 
Williams,K. Microsoft Dotnet Remoting. 2003. 

 [Mar04a] Mariani,R. , Bohling, B., C.Smith, and 
S.Barber. Improving Dotnet Application 
Performance and Scalability. 2004. 

[MPI94a] MPI FORUM. 1994. The MPI message 
passing interface standard. University of 
Tennesse,Knoxville. 

[MON05a] The MONO project. http://www.go-
MONO.com 

[ECMa] ECMA ISO/IEC 23270, ISO/IEC 23271 
and ISO/IEC 23272. http://www.ecma.ch and 
http://msdn.microsoft.com/net/ecma 

 [Kel02a] Kelly,W., Roe,P. and Sumitomo,J. , G2: 
A Grid Middleware for Cycle Donation using 
Dotnet , The 2002 International Conference on 
Parallel and Distributed Processing Techniques 
and Applications, Las Vegas, June 2002.  

[Kel02b] Kelly,W. and Roe,P., Donating Cycles 
over the Internet Using Web Services , The 
Eighth Australian World Wide Web 
Conference, Sunshine Coast, July 2002 

[Fer05] Ferreira, F and Sobral, Joao, ParC#:   
         Parallel Computing with C# in .Net*,                  
         Springer-Verlag Berlin Heidelberg 2005 
[Will01] Willcock,J and Lumsdaine,A and  
         Robison,A, Using MPI with C# and the  
         Common Language Infrastructure Indiana           
           University Computer Science Department  
        Technical Report 570 
[Car00] Carpenter,B, Getov,V, Judd,G, Skjellum,T 

and Fox,G MPJ: MPI-like Message Passing for 
Java. Concurrency: Practice and Experience 
Volume 12, Number 11. September 2000 

http://www.go
http://www.ecma.ch
http://msdn.microsoft.com/net/ecma

