
Implementing Unified Access to Scientific Data

from .NET Platform

Sergey B. Berezin
Assistant Professor,

Moscow State University,
Computational Mathematics and
Cybernetics, Leninskie gory,

1 MSU, 119992, Moscow, Russia.

s_berezin@cs.msu.su

Dmitriy V. Voitsekhovskiy
Postgraduate,

Moscow State University,
Computational Mathematics and
Cybernetics, Leninskie gory,

1 MSU, 119992, Moscow, Russia.

idmitry@inbox.ru

Vilen M. Paskonov
Professor,

Moscow State University,
Computational Mathematics and
Cybernetics, Leninskie gory,

1 MSU, 119992, Moscow, Russia.

paskonov@cs.msu.su

ABSTRACT
Scientific data differ from common relational data in many aspects: scientific data may have a very complex

structure, they are usually stored in files of various formats and individual data items can be very large. In this

paper we present an extensible and efficient client-server system for accessing scientific data and its metadata.

The architecture and major capabilities of our system will be described in the paper. The core of our approach is

an extensible XML-based structure that annotates scientific data with rich metadata and maps every file or part of

a file to a named strongly typed entity.

We do not introduce any new file formats and file transfer techniques, thus our approach doesn’t require major

changes to existing computational software. SOAP protocol and Web Services are used for accessing data sets

and performing data requests. Filtering and caching enables an efficient access to large portions of data over

network. Example of implemented filters are cropping and thinning of 2D and 3D arrays.

Our system is fully extensible and allows adding new data types, new file formats and new filtering algorithms

without changing its core algorithms. Now it is used for accessing results of computational fluid dynamics

simulations, but we hope that it can be adapted to many branches of science. The client is implemented on the

.NET platform; the server-side is currently running on the IBM Regatta SMP mainframe on AIX

Keywords
Scientific data access, data management, visualization, web services, SOAP.

1. INTRODUCTION
Scientists are overwhelmed today by amounts of data

generated by experiments and simulations. According

to the Scientific Data Management Center at the

Lawrence Berkeley National Laboratory [Sdm05w]

up to 80 percents of a scientist’s time is spent on data

manipulation and only 20 percents – on actual

analysis. That’s why there is an emerging need of

more convenient tools for scientific data access and

analysis. Tendencies of scientific data management in

near future are listed in [Jim05a] along with vision of

the next generation data analysis tool called “smart

notebook”. In this paper we make a small step to such

a tool by introducing our approach which consists of

two parts: a scientific data access system and a data

visualization tool.

A lot of systems for scientific data management and

analysis were developed for many branches of

science, from astronomy [Jim01a] to computational

fluid dynamics problems on irregular meshes

[No01a]. Our system origins from the field of

computational fluid dynamics but we believe that it

appears to be useful in other branches of science.

Most important features of scientific data

management systems can be found in the survey

[Rea00a]. In our approach we focus on following

aspects:

Logical data management – a data management

system abstracts from the physical data layout. The

resulting view of the data is a uniform collection of

data items.

Physical data management – a request for logical

data items results in a transparent physical files

access, filtering and caching.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

.NET Technologies 2006

FULL papers conference proceedings

 ISBN 80-86943-06-2
Copyright UNION Agency – Science Press,

Plzen, Czech Republic.

Metadata management – metadata describes data

themselves [Jef02a]. Metadata is an important part of

scientific data set, because it helps a scientist to

understand data better and it helps various tools to

perform a data analysis and visualization more

efficiently.

2. RELATED WORKS
The evolution of Web technologies along with

cheaper and more powerful hardware and increased

networks bandwidth has brought to life new

approaches to scientific data management. The huge

number of online repositories and data centers allows

scientists to publish, to search, to display and to

download data.

The NCSA’s Scientific Data Service (SDS) [Sds97w]

provides Web access to a wide range of scientific

data, facilitating data sharing between science teams

and the general public. The SDS is a CGI program

that provides scientific data in the several well known

file formats. SDS is extensible and modular, but it is

a fairly time consuming task to make SDS understand

a new file format.

The metadata in SDS contains the fixed number of

attributes to search by: spatial, temporal, dataset

name, archive center, parameter name, platform

name, sensor name, etc. Users can interactively

examine the contents of a file with their Web

browser, view a thumbnail image of the data, and

retrieve the file, or a desired subset of the file, in its

original file format or in ASCII. SDS has no object-

oriented features and lacks support for client-side

data management and caching.

The OpenGIS scientific data server [Ogs97w] is

created by joint efforts of NCSA and the USDAC

Consortium. It provides geospatial data according to

object model described by the OpenGIS Abstract

Specification. This model hides format details for

three different types of geospatial data. Access to the

scientific data objects is performed through the

OpenGIS API. The objects returned to client can be

visualized or saved as files. But object became a

isolated entity after it has been obtained and it holds

no reference to source data set.

The Distributed Oceanographic Data System

(OPeNDAP) [Dap04w] is intended to give

researchers a transparent access to oceanographic

data across the Internet. Communication model in

OPeNDAP works with URL addresses of web servers

that deliver data to the researcher. In fact,

researcher’s data analysis software acts as a

sophisticated web browser. Each data set is accessed

via URL. Calls of API functions are forwarded to

referenced web servers. Depending on the request

type, the server returns a textual description of the

data set contents or the actual values of data variables

in a binary form. Textual descriptions provide a client

library with metadata information concerning the

operations that can be applied to data and the way

binary data is to be decoded. The OPeNDAP

incorporates a data translation facility, so that data

may be stored in formats defined by the data

provider, yet may be accessed by the user in a manner

identical to the access of local files. Thus, the system

provides transparent access to scientific data, but still

there is no support for client-side data management.

Originality of our approach is based on following

features: (1) integrity of data sets during their entire

lifecycle, (2) efficient client-side data management

and (3) common object-oriented API based on SOAP

and XML. Another feature of proposed system is its

high extensibility resulted from .NET Framework

dynamic nature.

3. ABOUT DATASET

3.1. Common Features of Scientific Data
Long time passed since the single standard and SQL

have been developed for the relational data model.

However, scientific data strongly differ from common

relational data in several aspects. This makes existing

data management paradigms unsuitable for scientific

data [Jim05a]. There is still no unified model for

accessing scientific data. In this paper we introduce a

new approach to the scientific data access that seems

to be pretty general.

Our logical data model was designed to reflect

following common features of all scientific data:

• Scientific data may have a very complex structure

and are usually stored in files of various specific

formats; individual data items can be very large.

• Scientific data often depend on parameters (for

example, on time) or can be viewed as a collection of

parameter slices.

• Practically all results of scientific researches

contain both data and metadata.

Metadata can be of two types. The first type of

metadata is designated for human reading and

contains information about simulation parameters,

about authors and the origin of data and so on. This

type of metadata allows associative search,

categorization and better understanding of scientific

data by external researchers.

The second type of metadata describes the type and

the format of scientific data. It is most useful for

different automated tools for data retrieval, filtering

and analysis. For example, the information about the

type helps the visualization system to suggest the

most suitable visualization method and its

parameters.

3.2. DataSet Object Model
DataSet is a key notion of our approach to the

scientific data management. It can be thought as a

self-describing entity containing references to actual

data annotated with rich metadata. DataSet Object

Model is shown on Fig.1.

Figure. 1. DataSet Object Model.

The Metadata section holds descriptive information

about DataSet and its data in a human readable form.

The Properties collection contains information about

simulations parameters, units of measurements,

affiliations and authors of data. The Descriptions

collection contains descriptions and annotations of

any object in a DataSet. These collections can be

used for searching and arranging DataSets.

The Metadata section also contains an address of a

data source server (to which a data request should be

sent) and the origin of a DataSet. The former allows

copying and distributing the DataSet, keeping its

functionality, and the latter allows checking for

possible updates to the DataSet.

Every logical part of data set is represented by

DataItem, which maps a portion of real data to a

named strongly typed object. А DataItem can depend

on one or more named parameters. Thus, a DataItem

is a collection of so-called slices, which correspond

to data for specific parameters values. The value of a

DataItem for specified parameters is represented by

an individual DataItemSlice object.

Each parameter has a name and a strongly defined

type such as double, string etc. The example of

parameters in computation fluid dynamics is time or

the Reynolds number, in geophysics – coordinates of

a data capture.

A DataItem can be either simple or composite.

Simple DataItems hold references to a data piece that

can be retrieved from a single location. We do not

introduce new file formats, but instead we rely on

existing well known formats such as netCDF or HDF

[Fmt06w]. The usage of existing file formats has

following advantages:

• We can easily assembly existing data in DataSets;

• We can use existing libraries to write or read

DataItems of DataSets;

• We can extract parts of DataSet for processing

with existing tools and utilities.

Composite DataItems are built by on the basis of one

or more components (see Fig.2). Each component is

the pair of a DataItem (possibly also composite) and

an optional class name of the component. Class

names help to distinguish components.

The following example introduces a constructor for

computation fluid dynamics problems. Let’s assume

that the DataSet contains two DataItems: uvw-

values, as a three-dimensional array of vectors, and

channel, as a spatial grid. Combination of 3D vector

array and data grid is a vector field. The constructor

named DataField is used to create a composite

DataItem velocity, representing the vector field. In

such a way, the composite DataItem should be

declared in the DataSet as an output of the DataField

constructor depending on two components: the uvw-

values with the class “values” and the channel with

the class “grid” (see listing 1).

Figure 2. Composite DataItem construction.

Another example of important constructors is the

constructor named CompositeVectorArray that

allows creating new arrays by combining several

arrays with smaller dimensions of items (see example

listing 1), and vice versa.

A DataSet aggregates different data sources

transparently for applications and makes it possible to

view scientific data as a single collection of typed

objects. This allows both logical and physical data

independence.

The common standard for XML metadata descriptors

and the DataSet XML schema definition were

developed and now they are used in data repository

for simulations in the field of CFD. We believe that

this structure will be suitable for many fields of

science, from computational fluid dynamics to

biological systems modeling.

3.3. DataSet Example
The following DataSet XML document describes

results of the numerical modeling of an unsteady flow

of viscous incompressible fluid in a flat channel. The

results of the modeling consist of four files with a

scalar array (three for the fluid velocity components

and one for the pressure) for each moment of time.

<dataset id="…" dataSource="http://..."

 origin="http://..." type="CFD" …>

 <metadata>

 <property name="Re"
 description="Reynolds number"
 type="double" value="140.0" />
 …
 <description>Incompressible viscous flow
in a 3D channel</description>

 <description id="velocity">Velocity
vector field</description>

 </metadata>

 <structure>

 <dataItem id="uvw-values"
 type="Vector3dArray3d" >
 <composite

 constructor="CompositeVectorArray">
 <component id="u-values" />
 <component id="v-values" />
 <component id="w-values" />
 </composite>
 </dataItem>

 <dataItem id="velocity"
 type="VectorField3d" >
 <composite

 constructor="DataField">
 <component id="uvw-values"
 class="values"/>
 <component id="channel" class="grid"/>
 </composite>
 </dataItem>

 <dataItemTemplate id="u-values"
 type="ScalarArray2d"
 sourceType="netCDF" />
 </structure>

 <data>

 <dataItem id="channel"
 type="NonUniformGrid3d"
 sourceName="grid.dat"
 sourceType="plain text" />
 <parameter name="time" type="double">
 <slice value="0.00000">
 <dataItem id="u-values"
 sourceName="u_0000.cdf" />
 …
 </slice>
 …
 </parameter>

 </data>

</dataset>

Listing 1. Example of DataSet XML document.

The structure section specifies composite

DataItems and templates for simple DataItems. The

dataItemTemplate element is used to simplify

DataItems declarations, especially parameterized. If

the template is defined for certain id then attributes

of the DataItem with the same id in data section will

be considered as defined by default and may be either

omitted or redefined with new values.

In the data section there are simple DataItems

defined and arranged in slices by parameters values.

In our example DataItems are defined for every

moment of time and correspond to each component

of the velocity vector and pressure. The DataItem

channel represents the mentioned above spatial grid,

that does not depend on time.

4. IMPLEMENTATION DETAILS
4.1. Architecture Overview
The server-side is currently running on the SMP

mainframe IBM Regatta on AIX and implements two

Web services. The first Web service performs

administrative functions and provides access to

DataSets. Search by metadata values is possible. The

second Web service serves requests for DataItems

and performs filtering. Complementary data request

caching is used to maximize the speed of the service.

The client-side of the system is implemented on the

.NET platform as class libraries. Global view of our

system is shown on Fig. 3.

The central class of the libraries is a DataSet. It is

developed according to the DataSet object model (see

Fig.1) and can be constructed on the basis of an XML

document that represents DataSet entity. The DataSet

class contains metadata and a collection of named

objects of the DataItem class.

Figure 3. Architecture overview.

The structure of the DataItem class is represented by

a tree, the nodes of which correspond to parameters

and leaves – to DataItemSlice objects. The DataItem

class offers convenient methods for data indexing by

a set of parameters, returning an object of the

DataItemSlice class for specified parameters values.

The DataItemSlice methods provide a direct access to

data and return typed data object.

When data object is requested the system

automatically forms and sends a data request to a data

source address that is declared in metadata of the

DataSet. Thus, client applications work with data

transparently and without caring where and how they

are stored.

The following code accesses array of velocity vectors

at the moment 0.0 from the DataSet described in

section 2.3. It can be seen in the DataSet that the

required array is located on a server as three different

files, but the physical representation of the data does

not matter for the client at all.

// Creating object of class DataSet using
// XML-representation of DataSet
DataSet dataset = new DataSet(xmlDoc);

// Fetching DataItem by its name
DataItem velocity =

dataset.DataItems["uvw-values"];
// Creating parameter corresponding to time
CompositeParameter param =

new CompositeParameter(

new ParameterValue("time", 0.0d));
// Fetching DataItemSlice for the parameter.
// It is an instance of DataItem for
// specified parameter value.
DataItemSlice dataVelocity =

velocity[param];

// Getting required data
Vector3dArray2d data =

 dataVelocity.GetData() as Vector3dArray2d;

Listing 2. Getting required data in C#.

4.2. Data Filtering
In most cases an application may request filtering of

the data, i.e. their additional processing. For instance,

a visualization program does not need such detailed

grid data as they are usually computed in numerical

experiments. Therefore thinning filter will be useful

in this situation, because the resulting data after

filtering will have exactly as many points as

necessary for its correct visualization.

Another example of filtering is cropping. Let us

assume that a scientist wants to study part of the data

in detail. There is no need for a full local copy of

existing data in that case, therefore cropping filter

will return only required data.

Data filtering can be performed either by the client-

side of the system or by the server-side. It occurs

absolutely transparently for applications that work

with the system: the decision where filtering will take

place is taken by the system itself.

Thus, besides specific data handling for specific

problem field, filters increase the efficiency of the

system and reduce network traffic.

The following example expands the previous one

given in listing 2 and illustrates how an application

may request data with additional filtering. If there is

no need for such a detailed velocity vectors array as it

stored in files, a thinning filter may be applied to the

data. The “Thinner” filter has parameters

PercentageX, PercentageY and PercentageZ – those

are fractions of points for each axis, which shall

remain after filtering, and we make them equal to 5%.

Code in C# is shown below:

// Creating object of class DataSet using
// XML-representation of DataSet
DataSet dataset = new DataSet(xmlDoc);

// Fetching DataItem by its name
DataItem velocity =

dataset.DataItems["uvw-values"];
// Creating parameter corresponding to time
CompositeParameter param =

new CompositeParameter(

new ParameterValue("time", 0.0d));
// Fetching DataItemSlice for the parameter.
// It is an instance of DataItem for
// the specified parameter value
DataItemSlice dataVelocity =

velocity[param];

// Creating filter "Thinner" for required
// data type and setting up its parameters
Filter filter = FilterFactory.GetFilter(

"Thinner", // filter class name
dataVelocity.TypeDescriptor);

FilterServices.SetFilterParameters(filter,

new FilterParameter[] {

 new FilterParameter("PercentageX", 0.05),
 new FilterParameter("PercentageY", 0.05),
 new FilterParameter("PercentageZ", 0.05)

});

// Getting required data
Vector3dArray2d data =

dataVelocity.GetData(filter)

as Vector3dArray2d;

Listing 3. Getting filtered data in C#.

Here an application gets the required filter,

requesting it from the FilterFactory object by the

filter’s class name and the type of data, to which it

shall be applied. Use of class factories is one of the

keys which enable the system’s high extensibility.

4.3. Performing DataRequest
DataRequest contains DataItem reference and filters,

which shall be applied to this DataItem.

DataRequest’s content provides all information

required to load the data. Any DataItem reference

belongs to one of the three types. The first type,

named dataSource, is designed for server’s handling,

which can locally (for the server) load requested data

according to the reference. The second type, named

dataRef, is used for remote loading of data that

already are available on server as one file or

directory. Besides the data type, dataRef contains the

transfer protocol type and URL. The third type of a

DataItem assumes that data are stored inline in

DataRequest. It is designated for transferring small

pieces of data and improves the overall efficiency of

request processing.

When an application requests data, the client libraries

form DataRequest for specified DataItem from

DataSet. DataRequest is passed by SOAP protocol to

DRS Web service (see Fig.3), which loads requested

data and tries to apply specified filters.

Only part of the filters might be applied, because

some of filters may be either absent on server or

inapplicable for particular data types. After filtering

is completed, the server makes filtered data shared

for the client, removes applied filters from

DataRequest, and replaces all dataSource elements

with dataRefs referring to the data or with inline data

(see Fig.4).

DataRequest

DataRequest

Filter

Filter

DataItem

Filtering

(may be

multiple)

DataItem

with dataRefs

Figure 4. DataRequest lifetime.

The final DataRequest is sent back to the client. In

this stage it contains either inline data or dataRefs,

i.e. what and how a client must load, and a list of

unapplied filters (which may be empty). As the data

are downloading to a local computer, remote

dataRefs become local references. After that, the

client-side of the system parses the data and applies

the filters which have been failed at the server. Data

parsing is performed by special data source objects.

The system can use various data source objects for

each pair of a data source type and a type of data,

which shall be loaded. All information that is

necessary for a data loader is contained in dataRef.

We neither introduce a new file transfer technique

nor restrict the choice of the existing one. The data

transfer type is specified in dataRef by the server

depending on its capabilities or any other term (for

example, a security policy). Currently this is a

transfer by FTP that is used, i.e. the server returns an

address of FTP endpoint and a path to the needed

file. One more file transfer possibility is the usage of

WS-Attachments extension. This option is simple and

interoperable, but it requires an extra bandwidth and

may not be applicable due to a security policy on

some systems.

In all suitable cases both the server and the client

make caching of the request’s result to decrease

request handling time. Data request processing

diagram is shown below.

Data Provider
DataItem’s slice

DataRequestData Services

Internet

Typed data object

Typed data object

Data Explorer

Cache Service

Server running

DataSource System

Sending

DataRequest

to DRS
Remote Data

Loader

Data Stream

DataRequest: only dataRefs

Parser

DataRequest:

only local dataRefs

Local Filtering

DR + Typed data object

Working with cache

Working with cache

File Transfer Server

Figure 5. DataRequest performing schema.

Contents of DataRequests, which are generated by

code on listing 3, are shown on listing 4:

<soap:Envelope … >
 <soap:Body>

 <dataRequest

dataSource="…" dataSet="guid" … >
 <filter name="Thinner">
 <parameters> … </parameters>

 <dataItem type="Vector3dArray3d">
 <composite

constructor="CompositeVectorArray">
 <component> <!-- u-values -->
 <dataItem type="ScalarArray3d">
 <dataSource sourceName="u0000.cdf"
sourceType="netCDF" sourceParameters="u" />
 </dataItem>

 </component>

 <component> … </component> <!-- v -->
 <component> … </component> <!-- w -->
 </composite>

 </dataItem>

 </filter>

 </dataRequest>

 </soap:Body>
</soap:Envelope>

Listing 4. DataRequest that is sent to the server.

<soap:Envelope …>
 <soap:Body>

 <dataRequest

dataSource="…" dataSet="guid" …>

 <dataItem type="Vector3dArray2d">
 <dataRef sourceType="binary"

sourceParameters="">

 <ftp url="ftp://..." />
 </dataRef>

 </dataItem>

 </dataRequest>

 </soap:Body>
</soap:Envelope>

Listing 5. DataRequest received from server

4.4. Extensibility of the System
One of our goals is not to design system for handling

CFD-related data, but to create extensible and

adaptable framework for managing scientific data

sets. Our system can be extended by new data types,

new data sources and new filters.

New data type is just a CLR class with no other

requirements. Additional interfaces such as

IScalarArray2d or INonUniformGrid3d whose names

speak for them are implemented when needed. For

each data type special type descriptor can be defined

in configuration file.

Data sources are used for loading data objects from

files or for composing new data objects from existing

ones (example is constructing vector array from few

scalar arrays). Thus, new data source has to be

developed for each new file format or for new

composite data type. Data sources are also listed in

configuration file.

Data filters transform data objects according to

filter’s parameters. New data filters should implement

two main functionalities: filter should be able to

embed itself in XML data request for server

processing and be able to perform actual client side

filtering if it is not supported on server. Filters are

also defined in configuration file.

For each new type of objects CLR class name and

strong assembly name is specified in configuration

file. On system start-up configuration file is

examined. Assemblies are loaded on demand and

objects are tied together in runtime using reflection

and dynamic type information.

The system’s architecture also allows every module

having special code optimizations. For example, a

filter can be optimized for work with a certain data

type (from any module) and vice versa.

5. VISUALIZATION
Atop the data access system described above we

build a visualization system for graphical exploration

and analysis of data. A sample screenshot is shown

below.

Our visualization system is built around the concept

of workspace – a combination of DataSets and

DataViews. It is important to mention that

Workspace contains only references to DataSets, so

Workspace is a very compact data structure that can

be easily transferred from the researcher's

workstation to his or her notebook providing a

familiar work environment at any location. The

structure of DataSet is shown in the left window on

the screenshot. There you can see a list of DataItems

and their parameters.

Figure 6. Visualization system screenshot

DataView is a visual object formed by a pair of a data

object and a visualization algorithm. On the

screenshot you can see one primary DataView (in the

right-top window) and one dependent DataView (in

the right-bottom window).

The primary DataViews take one of DataItems as its

data object. The visualization algorithm can be

chosen by the user from a list of options that is

formed according to a DataItem type. Options could

be sorted additionally according to the problem

description found in metadata (i.e. physical oriented

visualization algorithms will be on top for CFD

problems).

If a DataItem depends on some parameters, the user

is given a choice either to create a DataView for

individual parameter slices or to display the entire

DataItem with extra dimensions added by parameters.

For example, a scalar 2D data field in coordinates

(u,v) dependent on time can be displayed as an

animation of a 2D surface in time or as a 3D scalar

field in coordinated (u,v,t).

The secondary DataViews is created by applying one

of visualization tools to an existing DataView,

primary or secondary. The visualization tool is an

object that can be applied to a specified type of

DataView, has its own visual representation and

results in a new data object. The green plane in the

right-top window is a section tool that extracts 2D

subset from a 3D vector. The section plane can be

moved up or down using control below. On the

screenshot values of the 2D vector field subset are

shown as a 2D marker field.

So, the Workspace can be thought as hierarchy of

DataViews with DataSets as roots. Interacting with

controls changes data in the DataView and this

change is propagated automatically to all dependent

DataViews. Although the data flow paradigm is not

new in the field of scientific visualization [Vis96a]

our visualization system allows graphical

constructions of new visualization tools instantly

from a visual representation of data. We believe that

this will enable scientists to get new insights into data

on the fly.

6. SUMMARY
The scientific data access system presented in this

paper has following advantages:

• It gives an object oriented view to scientific data,

which means that the client can retrieve metadata and

data as strongly typed objects with caching and

filtering.

• It allows creating a single family of data analysis

tools, because almost any set of scientific data can be

represented as a DataSet.

• It provides an indexing and associative search of

data by their attributes and parameters hiding their

physical location.

• It is highly extensible and provides interfaces for

adding new data types, new types of data storage and

new filters. This makes our system applicable to

almost every branch of science.

• It is designed to interact with existing data storage

formats and there is no need to abandon the existing

computational or simulation software.

7. FUTURE WORK
We plan to extent our approach in three ways:

• Implement data management abilities – currently

our system is a data access system with no ability to

modify DataItems or DataSets.

• Extend a set of visualization tools by extending

our visualization software and providing interfaces

for our data access system from the existing powerful

visualization software such as AVS

• Implement in-memory cache on client computer.

Weak references are not suitable for this task because

when amount of data exceed hundreds of megabytes

weak reference became invalid shortly despite that

there are still a lot of free memory.

• Implement server-side software on .NET Platform

with reusing significant part of client-side code for

data filtering and parsing.

• Design and implement second version API using

language integrated queries and features found in

LINQ [Lnq06w].

8. ACKNOWLEGEMENTS
This project was supported by RFBR grant 05-07-

90378, 04-01-00332 and by the Student Laboratory

of Microsoft Technologies at the Moscow State

University.

9. REFERENCES
[Vis96a] William J. Schroeder, Kenneth M. Martin,

William E. Lorensen. The Design and

Implementation of an Object-Oriented Toolkit for 3D

Graphics and Visualization. IEEE Visualization '96

[Sdm05w] Scientific Data Management Center at

Lawrence Berkeley National Laboratory at

http://sdm.lbl.gov/sdmcenter

[Jim05a] Jim Gray; David T. Liu; Maria A. Nieto-

Santisteban; Alexander S. Szalay; Gerd Heber; David

DeWitt. Scientific Data Management in the Coming

Decade. Microsoft Research Technical Report MSR-

TR-2005-10

[Jim01a] Jim Gray; Alexander Szalay; Ani Thakar;

Peter Z. Zunszt; Tanu Malik; Jordan

Raddick.Christopher Stoughton; Jan van den Berg.

The SDSS SkyServer - Public Access to the Sloan

Digital Sky Server Data. Microsoft Research

Technical Report MSR-TR-2001-104

[No01a] J. No, R. Thakur, D. Kaushik, L. Freitag,

and A. Choudhary. "A Scientific Data Management

System for Irregular Applications", in Proc. of the

Eighth International Workshop on Solving Irregular

Problems in Parallel (Irregular 2001), April 2001

[Rea00a] Reagan Moore. Data Management Systems

for Scientific Applications. IFIP Conference

Proceedings; Vol. 188. pp. 273 – 284, 2000.

[Jef02a] K. G. Jeffery, A. Asserson, A. S. Lopatenko,

Comparative Study of Metadata for Scientific

Information: The place of CERIF in CRISs and

Scientific Repositories. Gaining Insight from

Research Information, 6th International Conference

on Current Reseach Information Systems, August 29-

31, 2002 in Kassel, German

[Sds97w] NCSA Scientific Data Server

http://hdf.ncsa.uiuc.edu/horizon/DataServer/

sds_design.html

[Ogs97w] Open Geospatial Consortium

http://www.opengeospatial.org/

[Dap04w] OPeNDAP: Open Source Project for a

Network Data Access Protocol.

http://www.opendap.org

[Fmt06w] Scientific Data Format Information FAQ

 http://fits.cv.nrao.edu/traffic/scidataformats/faq.html

[Lnq06w] The LINQ Project.

http://msdn.microsoft.com/netframework/future/linq/

