
Static Verification of Code Access Security Policy 
Compliance of .NET Applications 

 
Jan Smans 

Dept. of Computer Science 
Katholieke Universiteit Leuven  

Celestijnenlaan 200A  
3001 Leuven, Belgium  

jans@cs.kuleuven.ac.be 

Bart Jacobs 
Dept. of Computer Science 

Katholieke Universiteit Leuven 
Celestijnenlaan 200A 
3001 Leuven, Belgium 

bartj@cs.kuleuven.ac.be 

Frank Piessens 
Dept. of Computer Science 

Katholieke Universiteit Leuven 
Celestijnenlaan 200A  
3001 Leuven, Belgium 

frank@cs.kuleuven.ac.be 
 

ABSTRACT 
The base class library of the .NET Framework makes extensive use of the Code Access Security system to ensure 
that partially trusted code can be executed securely. Imperative or declarative permission demands indicate where 
permission checks have to be performed at run time to make sure partially trusted code does not exceed the 
permissions granted to it in the security policy. 
In this paper we propose expressive method contracts for specifying required security permissions, and a modular 
static verification technique for Code Access Security based on these method contracts. If a program verifies, it 
will never fail a run time check for permissions, and hence these run time checks can be omitted. 
Advantages of our approach include improved run time performance, and improved and checkable 
documentation for security requirements. Our system builds on the Spec# programming language and its 
accompanying static verification tool. 
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1. INTRODUCTION 
Nowadays, most software is created by combining 
components from various sources. Some programs 
can even be extended at run time with new 
components. For example, by extending a media 
player with a new codec, additional content can be 
displayed. However, not all parts of a composed 
program are necessarily equally trusted. For instance, 
a codec, embedded in a media player, may not be 
trusted to create network connections while the player 
itself does have that permission. Nonetheless, all 
parts, whether they are trusted or not, share the same 
process space, i.e. memory, processor etc. 

To allow execution of heterogeneous programs (i.e. 
programs composed from parts with different 
permissions), the Common Language Runtime (CLR) 

and the Java Virtual Machine (JVM) offer a fine-
grained access control mechanism called stack 
inspection [Gon02a, Fou02a]. The CLR uses the term 
Code Access Security (CAS) to refer to the stack 
inspection machinery. A trusted library can rely on 
this mechanism to protect the resources it 
encapsulates. The basic idea is to prevent 
unauthorized access to resources by guarding every 
sensitive operation by an access control check. This 
check determines whether the requested operation is 
allowed by inspecting (every frame on) the call stack. 
The Base Class Library makes extensive use of CAS 
to protect access to files, network resources, and so 
forth. 

While stack inspection has proven its usefulness in 
the past, it also has a number of shortcomings 
[Wal00a, Aba03a, Pot01a]. First of all, run time 
checking is used to enforce the security policy. These 
run time checks can incur a substantial performance 
overhead. Secondly, since access control checks are 
part of the implementation of library code, and since 
such checks are scattered throughout the 
implementation, it is hard to understand what is 
actually enforced. This is an issue for the developers 
of the library code: it is hard to validate that no 
access checks have been omitted, and that a 
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consistent security policy is enforced [Bes04a]. It is 
also an issue for developers of client code that calls 
the library: they will have to rely on informal 
documentation to infer what permissions their code 
will actually need to run properly [Kov02a]. 
Moreover, the risk that documentation becomes stale 
as library code evolves is real. 

In this paper, we propose formal method contracts 
specifying the CAS related behavior of methods, and 
we propose a modular static verification technique. 
For a library developer, successful static verification 
of a library method ensures that the implementation 
respects the method contract. Hence, the method 
contract can be seen as an improved and checkable 
documentation for possible security exceptions. For 
the developer of client code, successful static 
verification of a program (under an assumed minimal 
permission set for the client code) ensures that no run 
time check for permissions will ever fail. Successful 
static verification by the CLR at load time (under the 
actual permission set for the client code) proves that 
it is safe to turn off run time checks. 

Our system builds on the Spec# programming 
language (itself an extension of C#) [Bar04a] and its 
accompanying static verification tool. 

The rest of this paper is structured as follows: in 
section 2 we briefly review the mechanism of Code 
Access Security, and the Spec# programming system. 
In section 3 we discuss the abovementioned problems 
of CAS in more detail, and we define the goal of this 
paper. Next, we present our proposed solution in 
detail (section 4), and discuss its advantages and 
disadvantages (section 5). Finally, we compare with 
related work and conclude. 

2. BACKGROUND 
Code Access Security 
Code Access Security (CAS) defines code access 
rights by means of permissions. A permission is a 
first-class object that represents a right to access 
certain resources. A FileIOPermission object 
for instance represents the right to perform certain 
operations (read, write, ...) on certain files. 
Permission objects actually represent sets of more 
primitive permissions, and it is always possible to 
take the union or intersection of two permission 
objects of the same type. A PermissionSet object 
groups permissions of different types. 

Permissions are assigned to assemblies based on 
evidence. Examples of evidence include: location 
where the assembly was downloaded from, or the 
code publisher that digitally signed the assembly. The 
security policy is a configurable function that maps 
evidence to permission sets. The resulting permission 

set for a given assembly is called the static 
permission set. In this paper, we assume static 
permission sets can be approximated sufficiently, so 
we don't elaborate on evidence and the security 
policy evaluation process. In particular, when 
verifying client code for which the static permission 
set is not yet known, we will rely on a CAS assembly 
level attribute that the developer of client code can 
set to indicate the minimal static permission set his 
code needs to run properly.  

The CLR maintains for every thread an associated 
dynamic permission set that represents the actual 
access rights that the thread has at this point in its 
execution. The dynamic permission set is not 
represented explicitly in the CLR, but is computed by 
stack inspection: it defaults to the intersection of the 
static permission sets of all code that is currently on 
the call stack, but trusted library code can influence 
the stack inspection process as discussed below. 

Library code can control access to protected 
resources by means of the following operations on 
permission objects: 

• Calling Demand on a permission object p 
checks if p is in the dynamic permission set. 
This operation initiates a stack walk: all 
frames on the stack (from top to bottom) are 
checked for permission p. If a frame is 
encountered that doesn't have permission p 
in its static permission set, a Security-
Exception is thrown. Otherwise, 
Demand just terminates normally without 
any side-effects. This method is used by 
library code to guard sensitive operations 
from being accessed by semi-trusted code. 

• When calling Assert on a permission 
object p, the current stack frame is marked 
privileged for permission p. If such a frame 
is encountered during stack inspection for 
permission p, Demand returns normally. 
Hence, asserting a permission makes the 
dynamic permission set grow. Asserting a 
permission is used by highly trusted code to 
allow less trusted code to access some 
resource in a well-defined, secure way. 

Our analysis of the Rotor BCL, a partial, shared-
source implementation of the BCL [Stu03a], has 
shown that other operations on permission objects, 
such as Deny and PermitOnly, occur only rarely. 
Therefore, we do not consider them in this paper. 

Operations on permissions can be done imperatively: 
they are just method calls on objects. However, the 
Code Access Security system also supports a limited 
form of declarative operations on permission objects: 



an attribute can be placed on a method to indicate 
that a specific operation on a specific permission 
must be performed before execution of the method. 
Declarative CAS can be seen as a first step towards 
making the CAS behavior of a method more explicit. 
In their current form, declarative demands have 
limited expressive power: permissions that depend on 
the state of the program cannot be demanded in a 
declarative fashion. For example, to demand 
FileIOPermission for a path that was given as a 
parameter to the method, one must resort to 
imperative demands. 

The CAS system has numerous other features such as 
link demands and inheritance demands that we do not 
discuss here. We refer the reader to [Fre03a] for full 
details. 

Spec#/Boogie 
The Spec# Programming System [Bar04a] consists of 
three parts: an object-oriented language called Spec#, 
a compiler, and a program verifier, called Boogie. 
The language Spec# is an extension of C#. It extends 
C# with non-null types, checked exceptions, and 
constructs for writing specifications, such as object 
invariants and pre- and post-conditions for methods. 
Our proposed system builds on Spec#'s support for 
writing specifications. 

The Spec# compiler emits run-time checks for these 
specifications, and adds specification information as 
metadata to the generated assembly. The static 
verifier, Boogie, takes such an assembly with 
specification metadata, and statically verifies the 
consistency between the implementation and the 
specification. The verification is sound, but not 
complete. 

3. PROBLEM STATEMENT 
Problems with CAS 
While Code Access Security is a usable and essential 
part of the .NET security infrastructure, it has a 
number of well-known shortcomings. These can be 
summarized as follows: 

1. Code Access Security is implemented using 
dynamic checks, which can have a 
substantial impact on performance. 
Moreover, being based on stack inspection, 
Code Access Security can hinder 
optimizations that affect the execution stack. 

2. Security checks are typically part of the 
implementation of a method and as such, 
their effect is not visible in the signature of 
the method: the (informal) documentation 
has to specify under what circumstances 
security exceptions will be thrown. Writing 

and maintaining precise documentation is 
error-prone. 
While declarative security demands partly 
deal with this problem, they do not have the 
same expressive power as imperative 
demands, and our analysis of the Rotor BCL 
shows that approximately 60% of all 
demands are imperative demands. 

3. Not only are security checks part of the 
implementation, they are scattered 
throughout the BCL. Our analysis of the 
Rotor BCL found 183 demands scattered 
across 40 classes. This makes it very hard to 
understand what the Code Access Security 
system actually enforces. 

4. Finally, stack inspection tries to protect 
against luring attacks, where partially trusted 
code uses trusted but naive code to 
accomplish an attack. But stack inspection 
only addresses luring attacks based on 
method calls from semi-trusted to trusted 
code, and does not deal with other potential 
interactions, such as the reliance on results 
from semi-trusted code, or exceptions 
thrown from such code. 

Many researchers have recognized these 
shortcomings of sandboxing based on stack 
inspection, and have proposed partial solutions 
[Pot01a, Aba03a,Wal00a, Fou02a, Bes04a]. We refer 
to the related work section for a detailed discussion. 

This paper builds on these existing solutions and on 
the Spec# specification and verification infrastructure 
to propose a new solution that addresses (at least in 
part) the first three disadvantages identified above. In 
the discussion section, we also briefly indicate how 
our approach could be extended to deal also with the 
last disadvantage. 

Goal 
Our goal is to define method contracts for CAS that 
support modular static verification of an assembly 
with a known static permission set.  

Figure 1 concretizes this goal in the form of a tool 
called casverify. To verify an assembly (i.e. verify 
whether it could ever throw a Security-
Exception) for a given set of static permissions, 
we input that assembly, together with the 
specifications of all referenced assemblies, to 
casverify. The tool then determines whether 
execution of the given assembly could ever cause a 
demand to fail. 



Note that we use the term Spec#perm to indicate that 
the input consists of assemblies annotated with the 
permission-preconditions proposed in this paper. 

Our tool casverify is sound, but incomplete. In order 
to be useful, it requires method contracts and hence 
introduces annotation overhead.  

 

casverify 
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Static Permissions 

 
Figure 1: casverify 

We envision three use cases: 

Library developers must invest the effort to write 
precise method contracts. These contracts can be seen 
as a formal kind of documentation. A successful 
static verification ensures that the documentation is 
correct, in the sense that any method in the library 
assembly will never throw any security exceptions if 
it is called with a dynamic permission set that 
respects the preconditions. 

Developers of client code need not invest the effort of 
writing precise method contracts. We assume they 
just specify the requested minimum permission set for 
each assembly, using assembly level declarative 
security attributes. Each method in the assembly then 
gets a (overly conservative) precondition that requires 
this declared minimum permission set. If client 
assemblies can be statically verified under these 
method contracts, one can be sure that no security 
exceptions will be thrown at run time. 

At assembly load time, the CLR can input an 
assembly (together with its corresponding static 
permissions and referenced assemblies) to casverify 
to determine whether it is safe to turn off run time 
checking for that assembly. 

4. APPROACH 
To verify an assembly for a given set of static 
permissions, we first input that assembly, together 
with the specifications of all referenced assemblies, 
to a program transformer. This program transformer 

implements a transformation similar to Wallach’s 
Security-passing Style (SPS) transformation 
[Wal00a]. The output of this transformation is a 
Spec# assembly (plus corresponding specifications 
for referenced methods) that can be verified by 
Boogie. If Boogie can show that the transformed 
assembly is correct, the original assembly will never 
raise a SecurityException when executed with 
the given static permissions (or more). Figure 2 
shows how all this translates to an implementation for 
casverify. 

casverify

Spec#perm specs of 
referenced 
assemblies

Spec#perm assembly

Error messages

Static Permissions

(SPS) Program Transformation

Boogie

 
Figure 2: Implementation of casverify 

In this section we first illustrate the basic idea behind 
our approach using a very simple example. Secondly, 
we show how to extend this idea towards more 
complex scenarios. 

The Basic Idea 
To keep our explanation as clear and simple as 
possible, we make some assumptions about the 
programs we consider in this subsection. First of all, 
we assume that only one permission type is used, 
namely XPermission. An assembly either has this 
permission or has no permission at all. Secondly, we 
do not consider permissions that take parameters, so 
XPermission objects have no parameters. 

To be able to prove that for a given policy no 
permission demand will ever fail in a certain 
assembly, we require each of its methods and all 
referenced methods to be annotated using 
preconditions specifying the minimal required 
dynamic permission set of the method’s callers. For 
libraries, we expect developers to write these 
annotations; for client code, these preconditions 
correspond to the requested minimum permission set.  



A method execution may (directly or indirectly) raise 
a SecurityException if its caller violates a 
permission-precondition1, i.e. if the dynamic 
permission set of its caller does not include the 
minimal dynamic permission set specified in the 
precondition. In order to prove that no method in a 
certain assembly will ever throw such an exception, 
we have to show that 1) no method implementation 
violates a callee’s permission-precondition and that 
2) each method’s permission-precondition is 
sufficiently strong to make every demand in its body 
succeed.  

In a Spec# program, the dynamic permission set is 
not represented explicitly in the CLR in a separate 
data structure, but is computed by stack inspection. 
However, to be able to mention it in our 
specifications, we assume every method has access to 
a variable s2 that represents the dynamic permission 
set of its caller. Because we assumed that the 
programs we are verifying use only one permission 
type, namely XPermission, it suffices to give s 
the type bool. s is true if and only if the dynamic 
permission set includes XPermission. 

Figure 3: Class LibraryClass 
Consider the class LibraryClass of Figure 3. 
This class contains two methods: DoSensitive 
and SafeDoSensitive. The former method 
performs a sensitive operation after demanding 
XPermission. The sensitivity of the operation 
depends on the parameter level: if level is large, 
the operation becomes more “dangerous”. The latter 
method, SafeDoSensitive, allows any code, 
even code that doesn’t have XPermission in its 

                                                           
1 From now on, we will use the term permission-

precondition to refer to any precondition that constrains 
the caller’s dynamic permission set. 

2 This variable is only needed for verification purposes and 
is not present at run-time. 

static permission set, to perform the sensitive 
operation, but only for level equal to two. We 
assume that LibraryClass is part of a trusted 
library and that the static permission set of that 
library contains XPermission. The developer of 
that class has annotated the method DoSensitive 
with a precondition, specifying that it should only be 
called when s is true. In other words, the developer 
specified that the dynamic permission set of callers of 
DoSensitive should contain XPermission. 
Note that giving XPermission to a piece of code, 
allows it to perform the sensitive operation for any 
value of level. SafeDoSensitive has no real 
precondition: it can be called by any code, in any 
context. 

Figure 4: (SPS) program transformation 
Next, we discuss the SPS program transformation. 
Operations that modify the call stack, such as method 
calls and permission assertions, also (potentially) 
modify the dynamic permission set. For example, 
when XPermission is successfully asserted, s 
becomes true. To make these modifications 
explicit, the SPS program transformation inserts 
additional operations to update s. Figure 4 shows 
what transformations have to be applied to each part 
of the program3. Note that the transformed program is 
used only for static verification; the original program 
is executed. Furthermore, note that this 
transformation can be entirely automated and that no 
user interaction is required. When reading the 
transformation rules, keep in mind the difference 
between Assert() (i.e. calling the Assert() method on 
a permission object), and assert (the assertion of a 
boolean invariant that the static verifier will have to 
prove). For instance, rule (3) says that at a program 
point where a Demand() is done, the verifier should 
prove that s is true (i.e. XPermission is in the 
dynamic permission set).  

                                                           
3 Note that the SPS-transformation shown in Figure 4 

could be applied to IL-code to make it language 
independent. 

class LibraryClass{ 

 void DoSensitive(int level) 

   requires s==true; 

 { 

   new XPermission().Demand(); 

   //do sensitive operation 

 } 

 void SafeDoSensitive() 

   requires true; 

 { 

   new XPermission().Assert(); 

   DoSensitive(2); 

 } 

} 

SPS(m(a1,…,an){Body}) �   (1) 

 m(a1,…,an,bool s){ 

   s = s && StaticPerm(); 

   SPS(Body) 

 } 

SPS(o.m(x1,…,xn);) �     (2) 

o.m(x1,…,xn,s); 

SPS(p.Demand();) �    (3) 

assert s; 

SPS(p.Assert();) �    (4) 

assert StaticPerm(); 

 s = true; 



Figure 5: LibraryClass after transformation 
Figure 5 shows the result of the program 
transformation for LibraryClass. During 
verification, we assume that the policy assigns 
XPermission to this class. This is encoded via the 
method StaticPerm: this method returns true if 
the static permission set of its class contains 
XPermission; otherwise, it returns false. 

Figure 6: Class ClientClass 
Using a static program verifier, such as Boogie, we 
can verify LibraryClass. Boogie checks (among 
others) that preconditions hold at every call-site and 
that every assert-statement will succeed at run time. If 
we can prove the correctness of the transformed class, 
we know that using the original class under a 
dynamic permission set that satisfies the precondition 
will never result in a SecurityException. In 
other words, clients can provably rely on the formal 
method contract. If, for instance, the developer would 

leave out the precondition on the DoSensitive() 
method, verification would fail. 

After having verified the correctness of 
LibraryClass, we can write a client for it. The 
class ClientClass of Figure 6 is a client of 
LibraryClass: it calls methods of the library in 
its implementation.  

For client code, we cannot (always) expect 
developers to write permission-preconditions. We 
assume they just specify the requested minimum 
permission set for each assembly, using assembly 
level declarative security attributes. Each method in 
the assembly then gets an (overly conservative) 
precondition that requires this declared minimum 
permission set. The PermissionSetAttribute 
for ClientClass indicates that the developer 
expects that its code can potentially be executed 
without any static permission (except for the 
permission to execute, which we ignore for this 
example). So, for ClientClass methods, 
permission-preconditions default to true (i.e. no 
conditions on s). Therefore, anyone can call 
ClientClass’s methods without needing to hold 
XPermission. 

Figure 7: ClientClass after transformation 
After (automatically) adding preconditions, the 
program transformation described in Figure 4 is 
applied to ClientClass. The result of this 
transformation is shown in Figure 7. Note that 
StaticPerm returns false this time because the 
static permission set of ClientClass does not 
contain XPermission. 

class LibraryClass{ 

 void DoSensitive(int level, bool s) 

   requires s == true; 

 { 

   s = s && StaticPerm(); 

   assert s; 

   //do sensitive operation 

} 

 void SafeDoSensitive(bool s) 

 { 

   s = s && StaticPerm(); 

   assert StaticPerm(); 

   s = true; 

   DoSensitive(2, s); 

} 

 static bool StaticPerm() 

   ensures result == true; 

 { 

   return true; 

 } 

} 

class ClientClass{ 

 LibraryClass! t; 

 void m1(bool s) 

   requires true; 

 { 

   s = s && StaticPerm(); 

   t.DoSensitive(5, s); 

 } 

 void m2(bool s) 

   requires true; 

 { 

   s = s && StaticPerm(); 

   t.SafeDoSensitive(s); 

 } 

 static bool StaticPerm() 

   ensures result == false; 

 { 

   return false; 

 } 

} 

[assembly:PermissionSetAttribute( 

RequestMinimum, Name = "Execution")] 

class ClientClass{ 

 LibraryClass! t; 

 void m1() 

 { 

   t.DoSensitive(5); 

 } 

 void m2() 

 { 

   t.SafeDoSensitive(); 

 } 

} 



The transformed program and the specification of 
LibraryClass (a referenced assembly) are then 
“fed” to Boogie: 

• The static verifier detects that m1 violates 
the precondition of DoSensitive. This 
indicates a SecurityException might 
be thrown as part of the execution of m1 
(where a method execution includes nested 
method executions). 

• The static verifier proves that m2 will never 
raise a SecurityException because it 
does not violate a precondition or assert. 

Extending the Basic Idea 
In the previous section we discussed the basic ideas 
behind our approach. However, we considered only 
programs using a single, atomic permission. In this 
section we show how programs using multiple, 
parameterized permissions can be verified. 

Figure 8: (SPS) program transformation- revised 
When considering programs using multiple 
permissions, a dynamic permission set can no longer 
be represented by a Boolean variable. Instead we will 
represent dynamic permission sets by objects of the 
class PermissionSet4. This modification makes 
the rules for program transformation a bit more 
complex: instead of manipulating simple boolean 
variables, we now have to interact with dynamic 
permission sets by means of PermissionSet 
methods (see Figure 8).  

                                                           
4 The class PermissionSet used in this paper differs 

slightly from the one in the BCL in order to make it more 
amenable to static verification. The details of the 
differences are irrelevant for this paper, and hence are not 
discussed. 

We illustrate the extended approach using the trusted 
library method ReadUri of Figure 9. This method 
creates a stream to read from a given universal 
resource identifier (uri). Firstly, notice that the 
parameter uri determines which permissions are 
required: if the uri refers to a file, we need permission 
to access the file system; if it refers to a website, we 
need permission to access the web. Using 
preconditions, we can clearly state this in the 
interface of the method. Secondly, our approach 
supports permissions with parameters, given their 
precise specification.  

Figure 9: Method ReadUri 
In general, to verify a method, the verifier needs a 
precise specification of PermissionSet and of all 
involved permissions, in particular the constructor 
and the methods Equals, Intersect, Union and 
IsSubsetOf need to be carefully specified for each 
permission type. In the appendices we give detailed 
specifications for PermissionSet and for a 
permission class. Furthermore, we show what 
ReadUri looks like after program transformation in 
appendix C. 

5. DISCUSSION AND FUTURE WORK 
Our system partially addresses the first three 
disadvantages of CAS discussed in section 3.  

If static verification of an assembly succeeds, run 
time checks can be turned off, improving 
performance.  

SPS(m(a1,…,an){Body}) �   (1’) 

 m(a1,…,an, PermissionSet! s){ 

   s = s.Intersect(StaticPerm()); 

   SPS(Body) 

 } 

SPS(o.m(x1,…,xn);) �     (2’) 

o.m(x1,…,xn, s.Copy()); 

SPS(p.Demand();) �    (3’) 

assert SPS(allows(s,p)); 

SPS(p.Assert();) �    (4’) 

assert SPS(allows(StaticPerm(),p); 

 s = s.AddPermission(p); 

SPS(allows(s,p)) �    (5) 

 p.IsSubsetOf( 

    s.GetPermission(p.GetType())); 

public Stream ReadUri(Uri! uri) 

  requires uri.Scheme == "file" ==>  

           allows(s, newFileIOPermission( 

             uri.AbsolutePath)); 

  requires uri.Scheme == "http" ==>     

          allows(s, 

            newWebPermission(uri.Host)); 

 { 

   String p = uri.AbsolutePath; 

   String h = uri.Host; 

   Stream stream = null; 

   if(uri.Scheme == "file"){ 

     stream =  File.Open(p); 

   } 

   if(uri.Scheme == "http"){ 

     new WebPermission(h).Demand(); 

     new SocketPermission(h,80).Assert(); 

     Socket socket = new Socket(h, 80); 

     stream = new NetworkStream(socket); 

   } 

   return stream; 

} 



By making security requirements explicit as 
preconditions, formal documentation for the CAS 
related behavior of methods is provided, and if the 
method verifies, one can be sure that the 
documentation is correct in the sense that if the client 
security context satisfies the precondition, there will 
definitely be no security exceptions. 

The declarative nature of the preconditions makes it 
easier to understand what a library actually enforces: 
one does not need to look at the implementation to 
understand the security requirements of a method. 

Hence we believe the proposed system is valuable as 
it stands. Still, we envisage a number of adaptations 
and extensions that have not yet been explored 
completely, and will be the subject of future work. 

Supporting history based access control 
To deal with the fourth disadvantage listed in section 
3, our system could be adapted to verify history based 
access control [Aba03a] instead of standard stack 
inspection. To support history based access control, 
the SPS transformation needs small changes, and 
methods do not only need preconditions on the 
security context, but also postconditions: every 
method might potentially influence the dynamic 
permission set even after it has returned. It is not 
clear to us yet whether this additional annotation 
overhead would be workable in practice. 

Trading off annotation overhead for 
precision 
Our system supports a tradeoff in annotation 
overhead versus precision of the analysis. A library 
developer has to annotate methods with 
preconditions, but the weakest precondition that 
guarantees that no security exceptions will be thrown 
can be complex to write and will in general not be 
computable automatically.  

By writing stronger but simpler preconditions 
soundness is maintained, but some valid programs 
might be rejected. Finding the right balance between 
complexity of annotations and precision of the 
analysis can only be done by building up practical 
experience. 

Reducing annotation overhead by 
inferring preconditions 
While computing the weakest precondition that 
ensures no security exceptions will be thrown is 
infeasible in general, in many cases it is actually quite 
easy. 

An analysis of the use of CAS in the Rotor BCL 
shows that most occurrences of permission demands 
are instances of the following pattern: a method 
validates parameters, creates an appropriate 

permission possibly based on method parameters, 
demands that permission and subsequently asserts 
sufficient permissions to make sure the rest of the 
method will not throw further security exceptions. 
For methods that follow this pattern, inferring an 
appropriate precondition automatically is fairly easy. 
In particular, if the demand is specified declaratively 
(40% of the demands of the Rotor BCL are 
declarative), inferring the corresponding precondition 
is trivial. So there is hope that annotation overhead 
can be kept small. 

The hardest cases are probably methods that do not 
themselves demand or assert permissions, but instead 
call other methods that do so. 

A full assessment of the feasibility of inferring 
preconditions is future work. 

6. RELATED WORK 
Static analysis of stack inspection has been discussed 
extensively in the literature. 

Pottier, Skalka and Smith [Pot01a] developed a 
security typing system and showed that in a type-safe 
program, no demand ever fails at run-time. Our 
preconditions are more expressive, and consequently 
less conservative, than their typing system. As 
opposed to Pottier, our analysis is path-sensitive. For 
instance, for  

if(i+j != j+i){ 

   new DnsPermission().Demand(); 

} 

Pottier requires DnsPermission to be in the 
dynamic permission set before execution of the 
example, whereas we do not.  

A second difference is that [Pot01a] considers 
permissions to be atomic: a piece of code either has 
the permission (PermissionState.Unrestricted), or 
does not have the permission at all 
(PermissionState.None). For some types of 
permissions, such as FileIOPermission, this is too 
restrictive. Our approach can handle parameterized 
permissions. For instance, consider the following 
example: 

new FileIOPermission("/tmp"); 

Our approach allows client code that only has 
permission to access to the temporary directory, to 
call methods containing this statement. Atomic-
permission approaches would reject such programs. 

However, the increased expressiveness of our 
approach comes at a price: [Pot01a] can 
algorithmically infer the type of each method, while 
we require programmers to write preconditions. 
Moreover, to benefit from the path sensitivity of our 



approach, one potentially needs specification and 
verification of the functional correctness of code on 
the path to a permission demand. For now, we reduce 
the annotation overhead by using sensible defaults. In 
the future, we hope to find a way to automatically 
infer or safely approximate these preconditions. 

In [Bes04a], Besson, Blanc, Fournet and Gordon 
propose a technique for analyzing the security of 
libraries for systems that rely on stack inspection for 
access control. Their tool generates a permission-
sensitive call graph, given a library and a description 
of the permissions granted to unknown client code. 
This graph can then be queried to detect anomalous 
or defective control flow in the library.  

Bartoletti, Degano and Ferrari [Bar01a] use safe 
approximations of the permissions granted/denied to 
code at run time to reduce some of the overhead due 
to stack inspection. Their analysis requires the entire 
program as input; it cannot handle virtual calls to 
unknown code. 

Koved, Pistoia and Kershenbaum [Kov02a] present a 
technique for computing the set of required access 
rights at each program point. Their technique uses a 
context sensitive, flow sensitive, interprocedural data 
flow analysis. We are currently investigating this 
technique for automatically inferring the permission-
preconditions at each program point. However, 
because of path insensitivity, this technique is overly 
conservative. 

The program transformation described in this paper is 
based on the Security-passing Style transformation 
first proposed by Wallach. In [Wal00a], Wallach 
explains how the performance of stack inspection can 
be improved using this transformation. 

7. CONCLUSION 
This paper proposes a system for static verification of 
compliance to a Code Access Security policy. It 
relies on expressive method contracts to specify the 
dynamic permission set that a method requires the 
caller to have in order to execute without security 
exceptions. 

The system supports modular verification of methods 
annotated with such contracts. Verification of such a 
single method is useful in the context of library 
development, and ensures consistency of the contract 
with the implementation of the method, essentially 
showing that the (formal) documentation of security 
related behavior of the method is correct. 

If all assemblies that make up a program verify, one 
can be sure there will be no security exceptions, and 
hence run time stack inspection can be turned off. 

8. ACKNOWLEDGMENTS 
Bart Jacobs is a Research Assistant of the Fund for 
Scientific Research - Flanders (Belgium) (F.W.O.-
Vlaanderen). 

The authors would like to thank Wolfram Schulte for his 
comments and feedback on a draft of this paper. 

We would also like to thank the reviewers for their useful 
comments and feedback. 

9. REFERENCES 
[Aba03a] Abadi, M., Fournet, C. Access Control 

Based on Execution History. NDSS, pp. 6-7, 
2003. 

[Bar01a] Bartoletti, M., Pierpalo, D. and Ferrari, G. 
Static Analysis for Stack Inspection. in Elsevier 
Science B.V., 2001. 

[Bar04a] Barnett, M., Leino, K.R.M. and Schulte,W. 
The Spec# Programming System: An Overview. 
Microsoft Research, 2004. 

[Bes04a] Besson, F., Blanc, T., Fournet, C. and 
Gordon, A.D. From Stack Inspection to Access 
Control: A Security Analysis for Libraries. in 
proc. 17th IEEE Computer Security Foundations 
Workshop, pp. 61-75, 2004. 

[Fou02a] Fournet, C. and Gordon A.D. Stack 
Inspection: theory and variants. Symposium on 
Principles of Programming Languages, 2002. 

[Fre03a] Freeman, A. and Jones, A. Programming 
.NET Security, O’Reilly 2003. 

[Gon02a] Gong, L. JavaTM 2Platform Security 
Architecture. 2002. 

[Kov02a] Koved, L., Pistoia, M. and Kershenbaum, 
A. Access Rights Analysis for Java. 2002. 

[Pot01a] Pottier, F., Skalka, C., Smith, S. A 
Systematic Approach to Static Access Control. in 
proc. of 10th European Symposium on 
Programming, pp. 30-45, 2001. 

[Stu03a] Stutz, D., Neward, T and Shilling, G. 
Shared Source CLI. O’Reilly, 2003. 

[Wal00a] Wallach, D.S., Appel, A.W. and Felten,  
E.W. SAFKASI: A Security Mechanism for 
Language-based Systems. ACM Transactions on 
S. E. and M. 9, No. 4, 2000. 

 
 



Appendix A: PermissionSet 
 
Below, we give the specification of the class PermissionSet. The definition given below differs slightly from 
the one given in the BCL: 

• AddPermission does not modify this, but instead creates a new permission set. 
• Intersect does not return null when the intersection is empty. Instead it returns an empty permission set. 
• GetPermission never returns null. If a permission is not present in the set, GetPermission 

returns a permission with PermissionState.None. 
In Spec#, non-null types (see [Bar04a]) are denoted by T! (where T is an ordinary reference type). 
 
 
class PermissionSet{ 
 
 public IPermission! GetPermission(Type! t) 
   ensures result.GetType() == t;  
 
 public PermissionSet! Intersect(PermissionSet! other) 
   ensures Forall {Type! t;  
                   result.GetPermission(t).Equals( 

             this.GetPermission(t).Intersect(other.GetPermission(t))) 
            }; 

 
 public PermissionSet! AddPermission(IPermission! p) 
   ensures Forall {Type! t;  
                   (t != p.GetType())  
                     ==>     
                    result.GetPermission(t).Equals(this.GetPermission(t) 
                  }; 
   ensures result.GetPermission(p.GetType()).Equals( 
           p.Union(old(GetPermission(p.GetType())))); 
} 

 

Appendix B: IPermission and SocketPermission 
 
Below, we give the specifications of IPermission and of (a simplified version of) SocketPermission. 
The definitions given below differ slightly from the ones given in the BCL: 

• Intersect will never return null, not even when the intersection is empty. Instead it will return a permis-
sion with PermissionState.None. 

 
 
public interface IPermission { 

 bool IsSubsetOf(IPermission! other) 

   requires other.GetType() == this.GetType(); 

 

 IPermission! Intersect(IPermission! other) 

   requires other.GetType() == this.GetType(); 

   ensures result.GetType() == this.GetType(); 

 

 IPermission! Union(IPermission! other) 

   requires other.GetType() == this.GetType(); 

   ensures result.GetType() == this.GetType(); 

} 



 

public sealed class SocketPermission : IPermission { 

 

 public bool Includes(EndPointPermission p); 

 

 public SocketPermission(PermissionState state) 

   ensures state == PermissionState.Unrestricted ==> 

           Forall{EndPointPermission! p; Includes(p)}; 

   ensures state == PermissionState.None ==> 

           Forall{EndPointPermission! p; !Includes(p)}; 

 

 public SocketPermission(string host, int port) 

   ensures Forall{EndPointPermission! p; 

           Includes(p) == (p.Host == host && p.Port == port)}; 

 

 public bool IsSubsetOf(SocketPermission! other) 

   ensures result == Forall{EndPointPermission! p; 

           Includes(p) ==> other.Includes(p)}; 

 

 public SocketPermission! Intersect(SocketPermission! other) 

   ensures Forall{EndPointPermission! p; result.Includes(p) ==    

           (this.Includes(p) && other.Includes(p))}; 

 

 public SocketPermission! Union(SocketPermission! other) 

   ensures Forall{EndPointPermission! p; result.Includes(p) ==   

           (this.Includes(p) || other.Includes(p))}; 

 

 public bool IsSubsetOf(IPermission! other) 

   ensures result == IsSubsetOf((SocketPermission!) other); 

 

 public IPermission! Intersect(IPermission! other) 

   ensures result == Intersect((SocketPermission!) other); 

 

 public IPermission! Union(IPermission! other) 

   ensures result == Union((SocketPermission!) other); 

} 



 

Appendix C: ReadUri after (SPS) program transformation 
 
class ClassName{ 
 
 public Stream ReadUri(Uri! uri, PermissionSet! s) 
   requires uri.Scheme == "file" ==> 
       new FileIOPermission(uri.AbsolutePath).IsSubsetOf( 
        s.GetPermission(new FileIOPermission(uri.AbsolutePath).GetType())); 
   requires uri.Scheme == "http" ==>  
       new WebPermission(uri.Host).IsSubsetOf( 
        s.GetPermission(new WebPermission(uri.Host).GetType())); 
 { 
   s = s.Intersect(StaticPerm()); 
   String p = uri.AbsolutePath; 
   String h = uri.Host; 
   Stream stream = null; 
   if(uri.Scheme == "file"){ 
      stream =  File.Open(p, s.Copy()); 
   } 
   if(uri.Scheme == "http"){ 
      assert new WebPermission(h).IsSubsetOf( 
        s.GetPermission(new WebPermission(h).GetType())); 
      assert new SocketPermission(h, 80).IsSubsetOf( 
        StaticPerm().GetPermission(new SocketPermission(h, 80).GetType())); 
      s = s.AddPermission(new SocketPermission(h, 80)); 
      Socket socket = new Socket(h, 80, s.Copy()); 
      stream = new NetworkStream(socket, s.Copy()); 
   } 
   return stream; 
 } 
 
 public static PermissionSet StaticPerm() 
   //---> for every statically assigned permission p 
   ensures p.IsSubsetOf(result.GetPermission(p.GetType())); 
 
} 


