
Static Verification of Code Access Security Policy
Compliance of .NET Applications

Jan Smans

Dept. of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A
3001 Leuven, Belgium

jans@cs.kuleuven.ac.be

Bart Jacobs
Dept. of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

bartj@cs.kuleuven.ac.be

Frank Piessens
Dept. of Computer Science

Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

frank@cs.kuleuven.ac.be

ABSTRACT
The base class library of the .NET Framework makes extensive use of the Code Access Security system to ensure
that partially trusted code can be executed securely. Imperative or declarative permission demands indicate where
permission checks have to be performed at run time to make sure partially trusted code does not exceed the
permissions granted to it in the security policy.
In this paper we propose expressive method contracts for specifying required security permissions, and a modular
static verification technique for Code Access Security based on these method contracts. If a program verifies, it
will never fail a run time check for permissions, and hence these run time checks can be omitted.
Advantages of our approach include improved run time performance, and improved and checkable
documentation for security requirements. Our system builds on the Spec# programming language and its
accompanying static verification tool.

Keywords
static verification, code access security, stack inspection, Spec#

1. INTRODUCTION
Nowadays, most software is created by combining
components from various sources. Some programs
can even be extended at run time with new
components. For example, by extending a media
player with a new codec, additional content can be
displayed. However, not all parts of a composed
program are necessarily equally trusted. For instance,
a codec, embedded in a media player, may not be
trusted to create network connections while the player
itself does have that permission. Nonetheless, all
parts, whether they are trusted or not, share the same
process space, i.e. memory, processor etc.

To allow execution of heterogeneous programs (i.e.
programs composed from parts with different
permissions), the Common Language Runtime (CLR)

and the Java Virtual Machine (JVM) offer a fine-
grained access control mechanism called stack
inspection [Gon02a, Fou02a]. The CLR uses the term
Code Access Security (CAS) to refer to the stack
inspection machinery. A trusted library can rely on
this mechanism to protect the resources it
encapsulates. The basic idea is to prevent
unauthorized access to resources by guarding every
sensitive operation by an access control check. This
check determines whether the requested operation is
allowed by inspecting (every frame on) the call stack.
The Base Class Library makes extensive use of CAS
to protect access to files, network resources, and so
forth.

While stack inspection has proven its usefulness in
the past, it also has a number of shortcomings
[Wal00a, Aba03a, Pot01a]. First of all, run time
checking is used to enforce the security policy. These
run time checks can incur a substantial performance
overhead. Secondly, since access control checks are
part of the implementation of library code, and since
such checks are scattered throughout the
implementation, it is hard to understand what is
actually enforced. This is an issue for the developers
of the library code: it is hard to validate that no
access checks have been omitted, and that a

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

consistent security policy is enforced [Bes04a]. It is
also an issue for developers of client code that calls
the library: they will have to rely on informal
documentation to infer what permissions their code
will actually need to run properly [Kov02a].
Moreover, the risk that documentation becomes stale
as library code evolves is real.

In this paper, we propose formal method contracts
specifying the CAS related behavior of methods, and
we propose a modular static verification technique.
For a library developer, successful static verification
of a library method ensures that the implementation
respects the method contract. Hence, the method
contract can be seen as an improved and checkable
documentation for possible security exceptions. For
the developer of client code, successful static
verification of a program (under an assumed minimal
permission set for the client code) ensures that no run
time check for permissions will ever fail. Successful
static verification by the CLR at load time (under the
actual permission set for the client code) proves that
it is safe to turn off run time checks.

Our system builds on the Spec# programming
language (itself an extension of C#) [Bar04a] and its
accompanying static verification tool.

The rest of this paper is structured as follows: in
section 2 we briefly review the mechanism of Code
Access Security, and the Spec# programming system.
In section 3 we discuss the abovementioned problems
of CAS in more detail, and we define the goal of this
paper. Next, we present our proposed solution in
detail (section 4), and discuss its advantages and
disadvantages (section 5). Finally, we compare with
related work and conclude.

2. BACKGROUND
Code Access Security
Code Access Security (CAS) defines code access
rights by means of permissions. A permission is a
first-class object that represents a right to access
certain resources. A FileIOPermission object
for instance represents the right to perform certain
operations (read, write, ...) on certain files.
Permission objects actually represent sets of more
primitive permissions, and it is always possible to
take the union or intersection of two permission
objects of the same type. A PermissionSet object
groups permissions of different types.

Permissions are assigned to assemblies based on
evidence. Examples of evidence include: location
where the assembly was downloaded from, or the
code publisher that digitally signed the assembly. The
security policy is a configurable function that maps
evidence to permission sets. The resulting permission

set for a given assembly is called the static
permission set. In this paper, we assume static
permission sets can be approximated sufficiently, so
we don't elaborate on evidence and the security
policy evaluation process. In particular, when
verifying client code for which the static permission
set is not yet known, we will rely on a CAS assembly
level attribute that the developer of client code can
set to indicate the minimal static permission set his
code needs to run properly.

The CLR maintains for every thread an associated
dynamic permission set that represents the actual
access rights that the thread has at this point in its
execution. The dynamic permission set is not
represented explicitly in the CLR, but is computed by
stack inspection: it defaults to the intersection of the
static permission sets of all code that is currently on
the call stack, but trusted library code can influence
the stack inspection process as discussed below.

Library code can control access to protected
resources by means of the following operations on
permission objects:

• Calling Demand on a permission object p
checks if p is in the dynamic permission set.
This operation initiates a stack walk: all
frames on the stack (from top to bottom) are
checked for permission p. If a frame is
encountered that doesn't have permission p
in its static permission set, a Security-
Exception is thrown. Otherwise,
Demand just terminates normally without
any side-effects. This method is used by
library code to guard sensitive operations
from being accessed by semi-trusted code.

• When calling Assert on a permission
object p, the current stack frame is marked
privileged for permission p. If such a frame
is encountered during stack inspection for
permission p, Demand returns normally.
Hence, asserting a permission makes the
dynamic permission set grow. Asserting a
permission is used by highly trusted code to
allow less trusted code to access some
resource in a well-defined, secure way.

Our analysis of the Rotor BCL, a partial, shared-
source implementation of the BCL [Stu03a], has
shown that other operations on permission objects,
such as Deny and PermitOnly, occur only rarely.
Therefore, we do not consider them in this paper.

Operations on permissions can be done imperatively:
they are just method calls on objects. However, the
Code Access Security system also supports a limited
form of declarative operations on permission objects:

an attribute can be placed on a method to indicate
that a specific operation on a specific permission
must be performed before execution of the method.
Declarative CAS can be seen as a first step towards
making the CAS behavior of a method more explicit.
In their current form, declarative demands have
limited expressive power: permissions that depend on
the state of the program cannot be demanded in a
declarative fashion. For example, to demand
FileIOPermission for a path that was given as a
parameter to the method, one must resort to
imperative demands.

The CAS system has numerous other features such as
link demands and inheritance demands that we do not
discuss here. We refer the reader to [Fre03a] for full
details.

Spec#/Boogie
The Spec# Programming System [Bar04a] consists of
three parts: an object-oriented language called Spec#,
a compiler, and a program verifier, called Boogie.
The language Spec# is an extension of C#. It extends
C# with non-null types, checked exceptions, and
constructs for writing specifications, such as object
invariants and pre- and post-conditions for methods.
Our proposed system builds on Spec#'s support for
writing specifications.

The Spec# compiler emits run-time checks for these
specifications, and adds specification information as
metadata to the generated assembly. The static
verifier, Boogie, takes such an assembly with
specification metadata, and statically verifies the
consistency between the implementation and the
specification. The verification is sound, but not
complete.

3. PROBLEM STATEMENT
Problems with CAS
While Code Access Security is a usable and essential
part of the .NET security infrastructure, it has a
number of well-known shortcomings. These can be
summarized as follows:

1. Code Access Security is implemented using
dynamic checks, which can have a
substantial impact on performance.
Moreover, being based on stack inspection,
Code Access Security can hinder
optimizations that affect the execution stack.

2. Security checks are typically part of the
implementation of a method and as such,
their effect is not visible in the signature of
the method: the (informal) documentation
has to specify under what circumstances
security exceptions will be thrown. Writing

and maintaining precise documentation is
error-prone.
While declarative security demands partly
deal with this problem, they do not have the
same expressive power as imperative
demands, and our analysis of the Rotor BCL
shows that approximately 60% of all
demands are imperative demands.

3. Not only are security checks part of the
implementation, they are scattered
throughout the BCL. Our analysis of the
Rotor BCL found 183 demands scattered
across 40 classes. This makes it very hard to
understand what the Code Access Security
system actually enforces.

4. Finally, stack inspection tries to protect
against luring attacks, where partially trusted
code uses trusted but naive code to
accomplish an attack. But stack inspection
only addresses luring attacks based on
method calls from semi-trusted to trusted
code, and does not deal with other potential
interactions, such as the reliance on results
from semi-trusted code, or exceptions
thrown from such code.

Many researchers have recognized these
shortcomings of sandboxing based on stack
inspection, and have proposed partial solutions
[Pot01a, Aba03a,Wal00a, Fou02a, Bes04a]. We refer
to the related work section for a detailed discussion.

This paper builds on these existing solutions and on
the Spec# specification and verification infrastructure
to propose a new solution that addresses (at least in
part) the first three disadvantages identified above. In
the discussion section, we also briefly indicate how
our approach could be extended to deal also with the
last disadvantage.

Goal
Our goal is to define method contracts for CAS that
support modular static verification of an assembly
with a known static permission set.

Figure 1 concretizes this goal in the form of a tool
called casverify. To verify an assembly (i.e. verify
whether it could ever throw a Security-
Exception) for a given set of static permissions,
we input that assembly, together with the
specifications of all referenced assemblies, to
casverify. The tool then determines whether
execution of the given assembly could ever cause a
demand to fail.

Note that we use the term Spec#perm to indicate that
the input consists of assemblies annotated with the
permission-preconditions proposed in this paper.

Our tool casverify is sound, but incomplete. In order
to be useful, it requires method contracts and hence
introduces annotation overhead.

casverify

Spec # perm specs of
referenced
assemblies

Spec # perm assembly

Error messages

Static Permissions

Figure 1: casverify

We envision three use cases:

Library developers must invest the effort to write
precise method contracts. These contracts can be seen
as a formal kind of documentation. A successful
static verification ensures that the documentation is
correct, in the sense that any method in the library
assembly will never throw any security exceptions if
it is called with a dynamic permission set that
respects the preconditions.

Developers of client code need not invest the effort of
writing precise method contracts. We assume they
just specify the requested minimum permission set for
each assembly, using assembly level declarative
security attributes. Each method in the assembly then
gets a (overly conservative) precondition that requires
this declared minimum permission set. If client
assemblies can be statically verified under these
method contracts, one can be sure that no security
exceptions will be thrown at run time.

At assembly load time, the CLR can input an
assembly (together with its corresponding static
permissions and referenced assemblies) to casverify
to determine whether it is safe to turn off run time
checking for that assembly.

4. APPROACH
To verify an assembly for a given set of static
permissions, we first input that assembly, together
with the specifications of all referenced assemblies,
to a program transformer. This program transformer

implements a transformation similar to Wallach’s
Security-passing Style (SPS) transformation
[Wal00a]. The output of this transformation is a
Spec# assembly (plus corresponding specifications
for referenced methods) that can be verified by
Boogie. If Boogie can show that the transformed
assembly is correct, the original assembly will never
raise a SecurityException when executed with
the given static permissions (or more). Figure 2
shows how all this translates to an implementation for
casverify.

casverify

Spec#perm specs of
referenced
assemblies

Spec#perm assembly

Error messages

Static Permissions

(SPS) Program Transformation

Boogie

Figure 2: Implementation of casverify

In this section we first illustrate the basic idea behind
our approach using a very simple example. Secondly,
we show how to extend this idea towards more
complex scenarios.

The Basic Idea
To keep our explanation as clear and simple as
possible, we make some assumptions about the
programs we consider in this subsection. First of all,
we assume that only one permission type is used,
namely XPermission. An assembly either has this
permission or has no permission at all. Secondly, we
do not consider permissions that take parameters, so
XPermission objects have no parameters.

To be able to prove that for a given policy no
permission demand will ever fail in a certain
assembly, we require each of its methods and all
referenced methods to be annotated using
preconditions specifying the minimal required
dynamic permission set of the method’s callers. For
libraries, we expect developers to write these
annotations; for client code, these preconditions
correspond to the requested minimum permission set.

A method execution may (directly or indirectly) raise
a SecurityException if its caller violates a
permission-precondition1, i.e. if the dynamic
permission set of its caller does not include the
minimal dynamic permission set specified in the
precondition. In order to prove that no method in a
certain assembly will ever throw such an exception,
we have to show that 1) no method implementation
violates a callee’s permission-precondition and that
2) each method’s permission-precondition is
sufficiently strong to make every demand in its body
succeed.

In a Spec# program, the dynamic permission set is
not represented explicitly in the CLR in a separate
data structure, but is computed by stack inspection.
However, to be able to mention it in our
specifications, we assume every method has access to
a variable s2 that represents the dynamic permission
set of its caller. Because we assumed that the
programs we are verifying use only one permission
type, namely XPermission, it suffices to give s
the type bool. s is true if and only if the dynamic
permission set includes XPermission.

Figure 3: Class LibraryClass
Consider the class LibraryClass of Figure 3.
This class contains two methods: DoSensitive
and SafeDoSensitive. The former method
performs a sensitive operation after demanding
XPermission. The sensitivity of the operation
depends on the parameter level: if level is large,
the operation becomes more “dangerous”. The latter
method, SafeDoSensitive, allows any code,
even code that doesn’t have XPermission in its

1 From now on, we will use the term permission-

precondition to refer to any precondition that constrains
the caller’s dynamic permission set.

2 This variable is only needed for verification purposes and
is not present at run-time.

static permission set, to perform the sensitive
operation, but only for level equal to two. We
assume that LibraryClass is part of a trusted
library and that the static permission set of that
library contains XPermission. The developer of
that class has annotated the method DoSensitive
with a precondition, specifying that it should only be
called when s is true. In other words, the developer
specified that the dynamic permission set of callers of
DoSensitive should contain XPermission.
Note that giving XPermission to a piece of code,
allows it to perform the sensitive operation for any
value of level. SafeDoSensitive has no real
precondition: it can be called by any code, in any
context.

Figure 4: (SPS) program transformation
Next, we discuss the SPS program transformation.
Operations that modify the call stack, such as method
calls and permission assertions, also (potentially)
modify the dynamic permission set. For example,
when XPermission is successfully asserted, s
becomes true. To make these modifications
explicit, the SPS program transformation inserts
additional operations to update s. Figure 4 shows
what transformations have to be applied to each part
of the program3. Note that the transformed program is
used only for static verification; the original program
is executed. Furthermore, note that this
transformation can be entirely automated and that no
user interaction is required. When reading the
transformation rules, keep in mind the difference
between Assert() (i.e. calling the Assert() method on
a permission object), and assert (the assertion of a
boolean invariant that the static verifier will have to
prove). For instance, rule (3) says that at a program
point where a Demand() is done, the verifier should
prove that s is true (i.e. XPermission is in the
dynamic permission set).

3 Note that the SPS-transformation shown in Figure 4

could be applied to IL-code to make it language
independent.

class LibraryClass{

 void DoSensitive(int level)

 requires s==true;

 {

 new XPermission().Demand();

 //do sensitive operation

 }

 void SafeDoSensitive()

 requires true;

 {

 new XPermission().Assert();

 DoSensitive(2);

 }

}

SPS(m(a1,…,an){Body}) � (1)

 m(a1,…,an,bool s){

 s = s && StaticPerm();

 SPS(Body)

 }

SPS(o.m(x1,…,xn);) � (2)

o.m(x1,…,xn,s);

SPS(p.Demand();) � (3)

assert s;

SPS(p.Assert();) � (4)

assert StaticPerm();

 s = true;

Figure 5: LibraryClass after transformation
Figure 5 shows the result of the program
transformation for LibraryClass. During
verification, we assume that the policy assigns
XPermission to this class. This is encoded via the
method StaticPerm: this method returns true if
the static permission set of its class contains
XPermission; otherwise, it returns false.

Figure 6: Class ClientClass
Using a static program verifier, such as Boogie, we
can verify LibraryClass. Boogie checks (among
others) that preconditions hold at every call-site and
that every assert-statement will succeed at run time. If
we can prove the correctness of the transformed class,
we know that using the original class under a
dynamic permission set that satisfies the precondition
will never result in a SecurityException. In
other words, clients can provably rely on the formal
method contract. If, for instance, the developer would

leave out the precondition on the DoSensitive()
method, verification would fail.

After having verified the correctness of
LibraryClass, we can write a client for it. The
class ClientClass of Figure 6 is a client of
LibraryClass: it calls methods of the library in
its implementation.

For client code, we cannot (always) expect
developers to write permission-preconditions. We
assume they just specify the requested minimum
permission set for each assembly, using assembly
level declarative security attributes. Each method in
the assembly then gets an (overly conservative)
precondition that requires this declared minimum
permission set. The PermissionSetAttribute
for ClientClass indicates that the developer
expects that its code can potentially be executed
without any static permission (except for the
permission to execute, which we ignore for this
example). So, for ClientClass methods,
permission-preconditions default to true (i.e. no
conditions on s). Therefore, anyone can call
ClientClass’s methods without needing to hold
XPermission.

Figure 7: ClientClass after transformation
After (automatically) adding preconditions, the
program transformation described in Figure 4 is
applied to ClientClass. The result of this
transformation is shown in Figure 7. Note that
StaticPerm returns false this time because the
static permission set of ClientClass does not
contain XPermission.

class LibraryClass{

 void DoSensitive(int level, bool s)

 requires s == true;

 {

 s = s && StaticPerm();

 assert s;

 //do sensitive operation

}

 void SafeDoSensitive(bool s)

 {

 s = s && StaticPerm();

 assert StaticPerm();

 s = true;

 DoSensitive(2, s);

}

 static bool StaticPerm()

 ensures result == true;

 {

 return true;

 }

}

class ClientClass{

 LibraryClass! t;

 void m1(bool s)

 requires true;

 {

 s = s && StaticPerm();

 t.DoSensitive(5, s);

 }

 void m2(bool s)

 requires true;

 {

 s = s && StaticPerm();

 t.SafeDoSensitive(s);

 }

 static bool StaticPerm()

 ensures result == false;

 {

 return false;

 }

}

[assembly:PermissionSetAttribute(

RequestMinimum, Name = "Execution")]

class ClientClass{

 LibraryClass! t;

 void m1()

 {

 t.DoSensitive(5);

 }

 void m2()

 {

 t.SafeDoSensitive();

 }

}

The transformed program and the specification of
LibraryClass (a referenced assembly) are then
“fed” to Boogie:

• The static verifier detects that m1 violates
the precondition of DoSensitive. This
indicates a SecurityException might
be thrown as part of the execution of m1
(where a method execution includes nested
method executions).

• The static verifier proves that m2 will never
raise a SecurityException because it
does not violate a precondition or assert.

Extending the Basic Idea
In the previous section we discussed the basic ideas
behind our approach. However, we considered only
programs using a single, atomic permission. In this
section we show how programs using multiple,
parameterized permissions can be verified.

Figure 8: (SPS) program transformation- revised
When considering programs using multiple
permissions, a dynamic permission set can no longer
be represented by a Boolean variable. Instead we will
represent dynamic permission sets by objects of the
class PermissionSet4. This modification makes
the rules for program transformation a bit more
complex: instead of manipulating simple boolean
variables, we now have to interact with dynamic
permission sets by means of PermissionSet
methods (see Figure 8).

4 The class PermissionSet used in this paper differs

slightly from the one in the BCL in order to make it more
amenable to static verification. The details of the
differences are irrelevant for this paper, and hence are not
discussed.

We illustrate the extended approach using the trusted
library method ReadUri of Figure 9. This method
creates a stream to read from a given universal
resource identifier (uri). Firstly, notice that the
parameter uri determines which permissions are
required: if the uri refers to a file, we need permission
to access the file system; if it refers to a website, we
need permission to access the web. Using
preconditions, we can clearly state this in the
interface of the method. Secondly, our approach
supports permissions with parameters, given their
precise specification.

Figure 9: Method ReadUri
In general, to verify a method, the verifier needs a
precise specification of PermissionSet and of all
involved permissions, in particular the constructor
and the methods Equals, Intersect, Union and
IsSubsetOf need to be carefully specified for each
permission type. In the appendices we give detailed
specifications for PermissionSet and for a
permission class. Furthermore, we show what
ReadUri looks like after program transformation in
appendix C.

5. DISCUSSION AND FUTURE WORK
Our system partially addresses the first three
disadvantages of CAS discussed in section 3.

If static verification of an assembly succeeds, run
time checks can be turned off, improving
performance.

SPS(m(a1,…,an){Body}) � (1’)

 m(a1,…,an, PermissionSet! s){

 s = s.Intersect(StaticPerm());

 SPS(Body)

 }

SPS(o.m(x1,…,xn);) � (2’)

o.m(x1,…,xn, s.Copy());

SPS(p.Demand();) � (3’)

assert SPS(allows(s,p));

SPS(p.Assert();) � (4’)

assert SPS(allows(StaticPerm(),p);

 s = s.AddPermission(p);

SPS(allows(s,p)) � (5)

 p.IsSubsetOf(

 s.GetPermission(p.GetType()));

public Stream ReadUri(Uri! uri)

 requires uri.Scheme == "file" ==>

 allows(s, newFileIOPermission(

 uri.AbsolutePath));

 requires uri.Scheme == "http" ==>

 allows(s,

 newWebPermission(uri.Host));

 {

 String p = uri.AbsolutePath;

 String h = uri.Host;

 Stream stream = null;

 if(uri.Scheme == "file"){

 stream = File.Open(p);

 }

 if(uri.Scheme == "http"){

 new WebPermission(h).Demand();

 new SocketPermission(h,80).Assert();

 Socket socket = new Socket(h, 80);

 stream = new NetworkStream(socket);

 }

 return stream;

}

By making security requirements explicit as
preconditions, formal documentation for the CAS
related behavior of methods is provided, and if the
method verifies, one can be sure that the
documentation is correct in the sense that if the client
security context satisfies the precondition, there will
definitely be no security exceptions.

The declarative nature of the preconditions makes it
easier to understand what a library actually enforces:
one does not need to look at the implementation to
understand the security requirements of a method.

Hence we believe the proposed system is valuable as
it stands. Still, we envisage a number of adaptations
and extensions that have not yet been explored
completely, and will be the subject of future work.

Supporting history based access control
To deal with the fourth disadvantage listed in section
3, our system could be adapted to verify history based
access control [Aba03a] instead of standard stack
inspection. To support history based access control,
the SPS transformation needs small changes, and
methods do not only need preconditions on the
security context, but also postconditions: every
method might potentially influence the dynamic
permission set even after it has returned. It is not
clear to us yet whether this additional annotation
overhead would be workable in practice.

Trading off annotation overhead for
precision
Our system supports a tradeoff in annotation
overhead versus precision of the analysis. A library
developer has to annotate methods with
preconditions, but the weakest precondition that
guarantees that no security exceptions will be thrown
can be complex to write and will in general not be
computable automatically.

By writing stronger but simpler preconditions
soundness is maintained, but some valid programs
might be rejected. Finding the right balance between
complexity of annotations and precision of the
analysis can only be done by building up practical
experience.

Reducing annotation overhead by
inferring preconditions
While computing the weakest precondition that
ensures no security exceptions will be thrown is
infeasible in general, in many cases it is actually quite
easy.

An analysis of the use of CAS in the Rotor BCL
shows that most occurrences of permission demands
are instances of the following pattern: a method
validates parameters, creates an appropriate

permission possibly based on method parameters,
demands that permission and subsequently asserts
sufficient permissions to make sure the rest of the
method will not throw further security exceptions.
For methods that follow this pattern, inferring an
appropriate precondition automatically is fairly easy.
In particular, if the demand is specified declaratively
(40% of the demands of the Rotor BCL are
declarative), inferring the corresponding precondition
is trivial. So there is hope that annotation overhead
can be kept small.

The hardest cases are probably methods that do not
themselves demand or assert permissions, but instead
call other methods that do so.

A full assessment of the feasibility of inferring
preconditions is future work.

6. RELATED WORK
Static analysis of stack inspection has been discussed
extensively in the literature.

Pottier, Skalka and Smith [Pot01a] developed a
security typing system and showed that in a type-safe
program, no demand ever fails at run-time. Our
preconditions are more expressive, and consequently
less conservative, than their typing system. As
opposed to Pottier, our analysis is path-sensitive. For
instance, for

if(i+j != j+i){

 new DnsPermission().Demand();

}

Pottier requires DnsPermission to be in the
dynamic permission set before execution of the
example, whereas we do not.

A second difference is that [Pot01a] considers
permissions to be atomic: a piece of code either has
the permission (PermissionState.Unrestricted), or
does not have the permission at all
(PermissionState.None). For some types of
permissions, such as FileIOPermission, this is too
restrictive. Our approach can handle parameterized
permissions. For instance, consider the following
example:

new FileIOPermission("/tmp");

Our approach allows client code that only has
permission to access to the temporary directory, to
call methods containing this statement. Atomic-
permission approaches would reject such programs.

However, the increased expressiveness of our
approach comes at a price: [Pot01a] can
algorithmically infer the type of each method, while
we require programmers to write preconditions.
Moreover, to benefit from the path sensitivity of our

approach, one potentially needs specification and
verification of the functional correctness of code on
the path to a permission demand. For now, we reduce
the annotation overhead by using sensible defaults. In
the future, we hope to find a way to automatically
infer or safely approximate these preconditions.

In [Bes04a], Besson, Blanc, Fournet and Gordon
propose a technique for analyzing the security of
libraries for systems that rely on stack inspection for
access control. Their tool generates a permission-
sensitive call graph, given a library and a description
of the permissions granted to unknown client code.
This graph can then be queried to detect anomalous
or defective control flow in the library.

Bartoletti, Degano and Ferrari [Bar01a] use safe
approximations of the permissions granted/denied to
code at run time to reduce some of the overhead due
to stack inspection. Their analysis requires the entire
program as input; it cannot handle virtual calls to
unknown code.

Koved, Pistoia and Kershenbaum [Kov02a] present a
technique for computing the set of required access
rights at each program point. Their technique uses a
context sensitive, flow sensitive, interprocedural data
flow analysis. We are currently investigating this
technique for automatically inferring the permission-
preconditions at each program point. However,
because of path insensitivity, this technique is overly
conservative.

The program transformation described in this paper is
based on the Security-passing Style transformation
first proposed by Wallach. In [Wal00a], Wallach
explains how the performance of stack inspection can
be improved using this transformation.

7. CONCLUSION
This paper proposes a system for static verification of
compliance to a Code Access Security policy. It
relies on expressive method contracts to specify the
dynamic permission set that a method requires the
caller to have in order to execute without security
exceptions.

The system supports modular verification of methods
annotated with such contracts. Verification of such a
single method is useful in the context of library
development, and ensures consistency of the contract
with the implementation of the method, essentially
showing that the (formal) documentation of security
related behavior of the method is correct.

If all assemblies that make up a program verify, one
can be sure there will be no security exceptions, and
hence run time stack inspection can be turned off.

8. ACKNOWLEDGMENTS
Bart Jacobs is a Research Assistant of the Fund for
Scientific Research - Flanders (Belgium) (F.W.O.-
Vlaanderen).

The authors would like to thank Wolfram Schulte for his
comments and feedback on a draft of this paper.

We would also like to thank the reviewers for their useful
comments and feedback.

9. REFERENCES
[Aba03a] Abadi, M., Fournet, C. Access Control

Based on Execution History. NDSS, pp. 6-7,
2003.

[Bar01a] Bartoletti, M., Pierpalo, D. and Ferrari, G.
Static Analysis for Stack Inspection. in Elsevier
Science B.V., 2001.

[Bar04a] Barnett, M., Leino, K.R.M. and Schulte,W.
The Spec# Programming System: An Overview.
Microsoft Research, 2004.

[Bes04a] Besson, F., Blanc, T., Fournet, C. and
Gordon, A.D. From Stack Inspection to Access
Control: A Security Analysis for Libraries. in
proc. 17th IEEE Computer Security Foundations
Workshop, pp. 61-75, 2004.

[Fou02a] Fournet, C. and Gordon A.D. Stack
Inspection: theory and variants. Symposium on
Principles of Programming Languages, 2002.

[Fre03a] Freeman, A. and Jones, A. Programming
.NET Security, O’Reilly 2003.

[Gon02a] Gong, L. JavaTM 2Platform Security
Architecture. 2002.

[Kov02a] Koved, L., Pistoia, M. and Kershenbaum,
A. Access Rights Analysis for Java. 2002.

[Pot01a] Pottier, F., Skalka, C., Smith, S. A
Systematic Approach to Static Access Control. in
proc. of 10th European Symposium on
Programming, pp. 30-45, 2001.

[Stu03a] Stutz, D., Neward, T and Shilling, G.
Shared Source CLI. O’Reilly, 2003.

[Wal00a] Wallach, D.S., Appel, A.W. and Felten,
E.W. SAFKASI: A Security Mechanism for
Language-based Systems. ACM Transactions on
S. E. and M. 9, No. 4, 2000.

Appendix A: PermissionSet

Below, we give the specification of the class PermissionSet. The definition given below differs slightly from
the one given in the BCL:

• AddPermission does not modify this, but instead creates a new permission set.
• Intersect does not return null when the intersection is empty. Instead it returns an empty permission set.
• GetPermission never returns null. If a permission is not present in the set, GetPermission

returns a permission with PermissionState.None.
In Spec#, non-null types (see [Bar04a]) are denoted by T! (where T is an ordinary reference type).

class PermissionSet{

 public IPermission! GetPermission(Type! t)
 ensures result.GetType() == t;

 public PermissionSet! Intersect(PermissionSet! other)
 ensures Forall {Type! t;
 result.GetPermission(t).Equals(

 this.GetPermission(t).Intersect(other.GetPermission(t)))
 };

 public PermissionSet! AddPermission(IPermission! p)
 ensures Forall {Type! t;
 (t != p.GetType())
 ==>
 result.GetPermission(t).Equals(this.GetPermission(t)
 };
 ensures result.GetPermission(p.GetType()).Equals(
 p.Union(old(GetPermission(p.GetType()))));
}

Appendix B: IPermission and SocketPermission

Below, we give the specifications of IPermission and of (a simplified version of) SocketPermission.
The definitions given below differ slightly from the ones given in the BCL:

• Intersect will never return null, not even when the intersection is empty. Instead it will return a permis-
sion with PermissionState.None.

public interface IPermission {

 bool IsSubsetOf(IPermission! other)

 requires other.GetType() == this.GetType();

 IPermission! Intersect(IPermission! other)

 requires other.GetType() == this.GetType();

 ensures result.GetType() == this.GetType();

 IPermission! Union(IPermission! other)

 requires other.GetType() == this.GetType();

 ensures result.GetType() == this.GetType();

}

public sealed class SocketPermission : IPermission {

 public bool Includes(EndPointPermission p);

 public SocketPermission(PermissionState state)

 ensures state == PermissionState.Unrestricted ==>

 Forall{EndPointPermission! p; Includes(p)};

 ensures state == PermissionState.None ==>

 Forall{EndPointPermission! p; !Includes(p)};

 public SocketPermission(string host, int port)

 ensures Forall{EndPointPermission! p;

 Includes(p) == (p.Host == host && p.Port == port)};

 public bool IsSubsetOf(SocketPermission! other)

 ensures result == Forall{EndPointPermission! p;

 Includes(p) ==> other.Includes(p)};

 public SocketPermission! Intersect(SocketPermission! other)

 ensures Forall{EndPointPermission! p; result.Includes(p) ==

 (this.Includes(p) && other.Includes(p))};

 public SocketPermission! Union(SocketPermission! other)

 ensures Forall{EndPointPermission! p; result.Includes(p) ==

 (this.Includes(p) || other.Includes(p))};

 public bool IsSubsetOf(IPermission! other)

 ensures result == IsSubsetOf((SocketPermission!) other);

 public IPermission! Intersect(IPermission! other)

 ensures result == Intersect((SocketPermission!) other);

 public IPermission! Union(IPermission! other)

 ensures result == Union((SocketPermission!) other);

}

Appendix C: ReadUri after (SPS) program transformation

class ClassName{

 public Stream ReadUri(Uri! uri, PermissionSet! s)
 requires uri.Scheme == "file" ==>
 new FileIOPermission(uri.AbsolutePath).IsSubsetOf(
 s.GetPermission(new FileIOPermission(uri.AbsolutePath).GetType()));
 requires uri.Scheme == "http" ==>
 new WebPermission(uri.Host).IsSubsetOf(
 s.GetPermission(new WebPermission(uri.Host).GetType()));
 {
 s = s.Intersect(StaticPerm());
 String p = uri.AbsolutePath;
 String h = uri.Host;
 Stream stream = null;
 if(uri.Scheme == "file"){
 stream = File.Open(p, s.Copy());
 }
 if(uri.Scheme == "http"){
 assert new WebPermission(h).IsSubsetOf(
 s.GetPermission(new WebPermission(h).GetType()));
 assert new SocketPermission(h, 80).IsSubsetOf(
 StaticPerm().GetPermission(new SocketPermission(h, 80).GetType()));
 s = s.AddPermission(new SocketPermission(h, 80));
 Socket socket = new Socket(h, 80, s.Copy());
 stream = new NetworkStream(socket, s.Copy());
 }
 return stream;
 }

 public static PermissionSet StaticPerm()
 //---> for every statically assigned permission p
 ensures p.IsSubsetOf(result.GetPermission(p.GetType()));

}

