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ABSTRACT

We develop an analytic framework for quantum sys-
tems defined on a circle threaded by magnetic flux,
generalizing the Bargmann representation via Theta
functions. By introducing flux-dependent coherent
states and displacement operators, we construct entire
analytic wavefunctions and derive a reproducing
kernel with quasi-periodic boundary conditions.
This approach captures topological effects such as
the Aharonov-Bohm phase and provides tools rele-
vant for mesoscopic rings and topological quantum
computation.

Compared to flux-free analytic approaches, the present
framework directly encodes quasi-periodic boundary
conditions, making it suitable for simulating observ-
ables such as persistent currents and phase shifts. Fu-
ture work includes numerical implementations of the
Theta function framework for flux qubits, extensions to
multi-particle systems, and exploration of connections
to non-Abelian topological phases.

1 INTRODUCTION

Quantum systems on compact topologies, such as cir-
cles, offer deep insights into both theoretical and ap-
plied physics. Threading such systems with magnetic
flux introduces topological changes in boundary con-
ditions, leading to observable quantum effects central
to mesoscopic devices, superconducting circuitry, and
emerging topological quantum computing paradigms.

A foundational quantum phenomenon illustrating this
is the Aharonov-Bohm (AB) effect: a charged parti-
cle encircling a magnetic flux acquires a measurable
phase shift, even in regions devoid of magnetic fields,
underscoring the fundamental significance of topology
and potentials in quantum mechanics [15]. In recent
years, research has extended these insights to meso-
scopic thermoelectric devices, where AB-induced co-
herence enhances quantum interference in quantum-dot
heat engines [16].

Persistent currents in mesoscopic rings remain a topic
of active interest. Ganguly and Maiti (2025) reported
that synthetic fluxes in non-Hermitian Hatano-Nelson
rings, especially in the presence of correlated disorder,
can amplify both real and imaginary persistent currents
[17]. Similarly, Sarkar et al. (2025) demonstrated en-
hancements in persistent currents under quasiperiodic
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non-Hermitian disorder, even with weak interactions
[18]. These studies highlight the intricate interplay be-
tween topology, disorder, and flux in modern systems.

Moreover, non-Hermitian delocalization phenomena
have recently been revealed where an imaginary
velocity component can drive delocalization and
entanglement under periodic boundary conditions [19].
Such advances underscore the growing importance
of analytic tools capable of capturing flux-induced
behavior in non-Hermitian contexts.

In parallel, analytic representations - such as the
Bargmann formalism provide powerful perspectives
by mapping quantum states into entire analytic func-
tions. Jacobi Theta functions naturally extend these
frameworks to compact domains, encoding periodic
and quasi-periodic boundary behaviors. Foundational
mathematical work on Theta functions and modular
forms remains crucial [8, 9], as does more recent
adaptation to quantum systems on Z(d) and circles
[10, 11, 12].

However, these prior analytic methods typically as-
sumed strict periodicity (g(x +2m) = g(x)) and thus
failed to incorporate flux-driven quasi-periodicity or
flux-dependent observables. Our work bridges this gap
by embedding the AB phase into the analytic repre-
sentation itself. We construct analytic wavefunctions
0y (z) satisfying g(x+27) = € g(x), thus integrating
flux topology at the representational level. This exten-
sion enables analytic computation of physical observ-
ables and lays the groundwork for future exploration
of interacting systems, higher-genus topologies, non-
Hermitian systems, and non-Abelian topological phases
[13, 14].

Contributions

* Development of a flux-dependent analytic frame-
work using Jacobi Theta functions.

e Derivation of reproducing kernels and analysis of
flux-driven zero dynamics.

e Analytical computation of persistent currents and in-
terference phases.

e Comparison with flux-free analytic methods, high-
lighting clear advantages.
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¢ Outlook toward numerical implementations, many-
body interactions, and topological computation
models.

The paper is structured as follows. Section 2 presents
the flux-dependent analytic representation. Section 3
constructs the reproducing kernel and explores zero dy-
namics. Section 4 details applications including per-
sistent currents and flux qubits. Section 5 extends the
discussion to non-Hermitian and topological general-
izations. Finally, Section 6 concludes with a summary
and future research directions.

1.1 Boundary Conditions with Flux

Consider a quantum system described by a wavefunc-
tion g(x) defined on the circle of unit radius, with
x € [0,27]. The Hilbert space is L?([0,27x]) with the
usual inner product.

In the absence of magnetic flux, states satisfy strict pe-
riodicity:
q(x+2m) = q(x).

This ensures that wavefunctions are single-valued on
the circle.

When a magnetic flux @ threads the circle, the sys-
tem acquires a topological phase via the Aharonov-
Bohm effect. The boundary condition becomes quasi-
periodic:

; ed
qlx+2m) =e?q(x), 9=~ (1)
The parameter ¢ represents the flux-induced phase
shift. Equation (1) encodes the fundamental modifica-

tion of topology by flux.

1.2 Definition of the Analytic Representa-
tion
We now construct an analytic representation of states

satisfying the quasi-periodic condition. Let ®3 denote
the third Jacobi theta function:

O3 (u,7) = Y ™ T (1) > 0.

nez

Theta functions provide kernels that encode periodic
and quasi-periodic structures.

We define the flux-dependent analytic representation
Qy(z) of a state g(x) as

0sc)= [ atwes (25

where K > 0 is a parameter controlling the scale of the
analytic domain.

, iK) e 0T gy (2)
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1.3 Properties of the Representation
Entire Analyticity.

Since @3 (u,ik) is an entire function of u, and the inte-
gral in (2) is taken over a compact domain, it follows
that Q4 (z) is entire in z. Thus the analytic representa-

tion maps each physical state g(x) to an entire analytic
function on C.

Quasi-Periodicity.

We now prove that Qy (z) satisfies a flux-induced quasi-
periodicity condition. Consider:

2 _ .
0s(e2m)= [ 4()®3 (”Zz””) m) o195/ gy
0

Using the periodicity @3 (u+ 7, 7) = O3(u, ), we have
03 (528 ikc) = 03 (57, ix)
Thus
_om A
Qy(z+27m) =" / q(x) @3 (52, i) e /T dx,
Jo
which implies

0y (z+2m) = Q4 (2). 3)

Equation (3) shows that the analytic representation
faithfully encodes the quasi-periodicity induced by
flux.

Norm Preservation.

The map g(x) — Qy(z) preserves Hilbert space struc-
ture through an isometry involving the reproducing ker-
nel (derived in Section 3). Thus the analytic represen-
tation is not only mathematically consistent but also
physically faithful.

1.4 Consistency with the Flux-Free Case

An essential property of any flux-dependent generaliza-
tion is its reduction to the flux-free case when @ = 0.

Setting ¢ = 0 in (2), we obtain:

o) = [ oo (*55 i)

which is precisely the analytic representation used in
earlier work on compact quantum systems without flux
[11, 12].

Thus the present framework smoothly interpolates be-
tween the flux-free analytic representations of the liter-
ature and the flux-dependent case considered here.
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1.5 Physical Interpretation

The representation Qy(z) encodes the entire wavefunc-
tion g(x) as an analytic function with quasi-periodicity
(3). Physically, this means that the AB phase is built di-
rectly into the analytic structure, rather than added later
as a correction.

This is crucial for applications. For example:

* In mesoscopic rings, Qy(z) naturally encodes the
shift of energy levels and persistent currents due to
flux.

* In flux qubits, quasi-periodicity enables the analytic
representation to capture flux-dependent tunneling
amplitudes and interference.

e In more advanced scenarios, such as higher-genus
surfaces, the method generalizes to analytic struc-
tures incorporating multiple fluxes.

By embedding flux effects at the level of representation,
the framework establishes a foundation for analytic cal-
culations of topological quantum phenomena.

2 REPRODUCING KERNEL AND
ZERO DYNAMICS

The analytic representation introduced in Section 2 not
only provides a mapping from Hilbert space states to
entire functions, but also admits a natural reproducing
kernel structure. This reproducing property ensures that
the analytic representation is complete and that inner
products in Hilbert space can be expressed as integrals
in the analytic domain. Furthermore, the presence of
flux modifies the geometry of zeros of analytic func-
tions, an aspect that reveals deep connections to topo-
logical dynamics and Floquet theory.

2.1 Reproducing Kernel Construction

Let Q4 (z) denote the flux-dependent analytic represen-
tation defined in (2). To establish a reproducing prop-
erty, we construct the kernel

2n _ —w*
Koleow') = [ @(2>@(2W>

x e 0T gy (4)

This kernel depends explicitly on ¢, reflecting the role
of flux. It reduces to the flux-free kernel when ¢ = 0,
in agreement with previous studies [11, 12].

2.2 Reproducing Property

We now prove that the kernel (4) reproduces analytic
functions Qy(z). Consider

0s(2) = [ Kolzuw") Qo () dm(w)
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where dm(w) is the appropriate measure on the analytic
domain A.

The proof follows from Fubinids theorem: inserting the
definition of Qg (w) into the right-hand side and ex-
changing the order of integration recovers the original
representation (2). Thus Ky indeed acts as a reproduc-
ing kernel.

Inner Products.

The Hilbert space inner product can be expressed in the
analytic domain as

(@le2) = [ 0405 (2" am(z).

This shows that the analytic representation is not only
faithful but also norm-preserving, establishing it as a
genuine isometry between Hilbert space and the space
of analytic functions.

2.3 Translation in the Analytic Represen-
tation

A key property of the flux-dependent analytic represen-
tation is its transformation under translations in the an-
alytic variable z. In particular, we study how Qy(z) be-
haves when the argument is shifted by a real parameter
a.

Starting from the definition (2), one finds that
Q‘P (Z _ a) — eiKa/Z efiKz Q¢ (Z), (5)

where K is related to the Fourier mode of the state.

Equation (5) shows that translations in z are not
purely geometric shifts but are accompanied by
flux-dependent phase factors.  These exponential
terms encode the quasi-periodicity introduced by the
magnetic flux.

Physical Interpretation.

In the physical system, translation of z corresponds
to shifting the angular coordinate of the wavefunc-
tion on the circle. The additional phases represent the
Aharonov—Bohm contribution from the enclosed flux.
Thus, the translation property reflects how flux modi-
fies the analytic structure and distinguishes the quasi-
periodic case from the strictly periodic, flux-free set-
ting.

3 APPLICATIONS AND COMPAR-
ISONS

The analytic representation introduced in Section 2 and
the reproducing kernel developed in Section 3 provide a
rich mathematical framework. In this section, we show
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how these tools can be used to compute physically rel-
evant observables in mesoscopic physics and quantum
information. We focus on three main applications: per-
sistent currents, interference phase shifts, and compar-
isons with flux-free analytic methods.

3.1 Persistent Currents in Mesoscopic
Rings

One of the most celebrated consequences of flux in
quantum systems is the emergence of persistent cur-
rents. Consider a particle on a ring of circumference
27, threaded by a magnetic flux ®. The Hamiltonian is

1 d ed\?
H=——|(-ih———
2mR? ( ix 2n) ’
where R is the radius of the ring (here set to 1). The
eigenenergies are

n? 2
E,,(<I>)—2m<n—2q:r> , nez,

with ¢ = e®/h.
The persistent current is obtained as

1(®) = _aé"f) - _% (n— ¢) L e

Analytic Representation.

Within our framework, the wavefunction associated
with the n-th state is encoded by

2T _
006 = [ emen (%5

The flux-dependence is explicit in the exponential fac-
tor. Differentiating the analytic phase factor with re-
spect to @ reproduces the persistent current formula (6),
confirming the physical validity of the analytic frame-
work.

,iK) e 195/ 27) gy,

Physical Interpretation.

Equation (6) demonstrates that persistent currents os-
cillate with ®, vanishing when ¢ = 27n. This periodic-
ity is a direct manifestation of the quasi-periodicity of
Q¢ (z). The analytic representation therefore not only
encodes the correct boundary conditions but also pro-
vides a calculational tool for observables.

3.2 Phase Shifts in Interference Devices

Another key application is to interference devices such
as SQUIDs and flux qubits. In such systems, the AB
phase manifests as measurable shifts in interference
patterns.
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The quasi-periodic property
0p(z4+2m) = e Qy(2)

implies that a translation in the analytic domain intro-
duces a global phase shift. In an interference experi-
ment, the relative phase between two paths enclosing
different fluxes becomes

e
Ap = z(qﬁ — ).

This reproduces the experimental signature of the AB
effect: oscillations in current or voltage as a function of
applied flux.

Application to Flux Qubits.

In flux qubits, logical states are associated with clock-
wise and counter-clockwise current loops. The ana-
lytic representation captures the phase difference be-
tween these states as a flux-dependent quasi-periodicity.
This provides an alternative analytic perspective on flux
qubit dynamics.

3.3 Comparison with Flux-Free Analytic
Methods

Flux-free analytic representations, such as those stud-
ied in [11, 12], assume strict periodicity of the form
q(x+2m) = g(x). While these approaches successfully
describe systems without flux, they fail to account for
AB phase shifts and flux-controlled observables.

The present framework generalizes these methods by
including the exponential factor e~9*/(2%) in the repre-
sentation. The advantages can be summarized as fol-
lows:

* Boundary conditions: Flux-free methods im-
pose periodicity, while our framework encodes
quasi-periodicity induced by flux.

* Observables: Persistent currents and AB phase
shifts cannot be computed in flux-free analytic
methods, but emerge naturally here.

* Topological effects: Flux introduces winding num-
bers and modified zero dynamics, extending beyond
flux-free results.

* Generality: The flux-dependent framework reduces
smoothly to the flux-free case when @ = 0.

3.4 Comparative Summary

Table 1 summarizes the differences between flux-free
and flux-dependent analytic frameworks.
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Flux-Free

Flux-Dependent

Boundary condition

g(r+27) = ()

qx+27) = eq(x)

Phase shifts Absent

Encoded by e~

Persistent currents

Not captured

Computable via Qg (z)

Translation / dynamics

Closed orbits

Flux-modified quasi-periodicity

Applications

Compact systems

Mesoscopic rings, flux qubits

Table 1: Comparison between flux-free and flux-dependent analytic frameworks.

In conclusion, the analytic framework developed here
not only reproduces established results such as persis-
tent currents and AB phase shifts, but also extends an-
alytic representations to new regimes where topology
and flux are central. In the next section, we discuss
broader implications, including numerical implemen-
tations, interacting systems, and connections to non-
Abelian phases in topological quantum computing.

4 DISCUSSION: TOWARD TOPOLOG-
ICAL QUANTUM COMPUTING

The analytic framework developed in this paper has
implications that extend beyond mesoscopic physics.
By encoding flux-induced quasi-periodicity into ana-
Iytic functions, the representation provides a platform
for exploring topological quantum computation, fault-
tolerant architectures, and quantum simulation of inter-
acting systems. In this section, we highlight several di-
rections of future research.

4.1 Numerical Implementations

A practical advantage of analytic representations
is the possibility of developing efficient numerical
algorithms. In conventional approaches, simulating
flux qubits or mesoscopic rings often requires diag-
onalization of large Hamiltonians or time-evolution
under flux-dependent operators. Such methods scale
poorly with system size.

The Theta-function framework offers a more compact
description. Because quasi-periodicity is built directly
into Q4 (z), simulations can focus on analytic properties
such as reproducing kernels and zero dynamics, bypass-
ing brute-force diagonalization. One can envision hy-
brid numerical-analytic methods where states are rep-
resented by truncated series expansions of Qy(z), and
observables are extracted using the kernel (4).

This approach could significantly reduce computational
cost and may provide advantages in simulating arrays
of flux qubits or larger superconducting circuits, partic-
ularly when coupled with modern spectral methods.

4.2 Multi-Particle and Interacting Sys-
tems

The analytic representation has so far been applied to
single-particle wavefunctions on a circle. An important
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extension is to multi-particle and interacting systems on
compact topologies.

In such cases, the Hilbert space is spanned by states
q(x1,...,xn) defined on N-fold circles. Introducing a
flux @ threading the system modifies the boundary con-
ditions in each variable, leading to a multi-dimensional
quasi-periodic structure.

The corresponding analytic representation would in-
volve multivariable Theta functions, generalizing (2) to
higher dimensions. Such an extension would allow the
study of flux-dependent entanglement, coherence, and
correlation effects.

For example, in a two-particle system one may examine
how flux controls the exchange statistics of particles on
a compact topology. In interacting systems, flux could
modulate collective excitations, potentially giving rise
to new topological phases.

4.3 Higher-Genus Surfaces and Modular
Structure

The circle is the simplest compact topology. More com-
plex surfaces, such as tori or higher-genus Riemann sur-
faces, are also relevant in condensed matter and topo-
logical field theories.

Theta functions naturally generalize to these cases. An-
alytic representations on higher-genus surfaces would
encode multiple fluxes, each associated with a distinct
cycle of the surface. The modular properties of Theta
functions then acquire direct physical interpretation:
modular transformations correspond to different ways
of threading flux through the system.

This line of research could unify analytic representa-
tions with the study of modular invariance in conformal
field theory and with the use of Riemann surfaces in
string theory.

4.4 Connections to Non-Abelian Topolog-
ical Phases

Perhaps the most exciting extension concerns non-
Abelian anyons, which are central to fault-tolerant
topological quantum computation [13, 14]. Non-
Abelian phases arise in systems where exchanging
quasiparticles implements unitary transformations
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on the ground-state manifold, providing inherent
robustness to local errors.

The analytic framework developed here may serve as
a stepping stone toward describing such systems. By
encoding flux and topology in analytic functions, one
may attempt to generalize the representation to non-
Abelian settings, where states transform under higher-
dimensional representations of the braid group.

In particular, the monodromy of zeros in the flux-
dependent analytic representation suggests an analogy
with braiding statistics: as flux is varied, zeros trace
structured paths, reminiscent of anyonic worldlines.
Investigating this analogy more rigorously may provide
analytic tools for understanding non-Abelian braiding
in quantum Hall states or Kitaev-type models.

4.5 Future Perspectives

The implications of flux-dependent analytic representa-
tions extend across several domains:

* In mesoscopic physics, they provide compact tools
for computing persistent currents and interference
shifts.

e In quantum technology, they offer analytic perspec-
tives on flux qubits and superconducting circuits.

* In mathematical physics, they connect to modular
forms, Riemann surfaces, and the theory of Theta
functions.

* Intopological quantum computing, they open poten-
tial pathways toward analytic descriptions of non-
Abelian anyons.

Thus the framework presented here not only addresses
immediate questions of flux and boundary conditions,
but also lays a foundation for broader exploration of
topological and analytic structures in quantum theory.

S CONCLUSION

In this work we have developed a flux-dependent an-
alytic representation for quantum systems on a circle,
based on Jacobi Theta functions. By incorporating the
Aharonov-Bohm phase directly into the analytic for-
malism, we constructed entire analytic wavefunctions
that satisfy quasi-periodic boundary conditions. This
generalizes the classical Bargmann representation and
earlier flux-free Theta function approaches to systems
where magnetic flux plays a fundamental role.

We showed that the representation admits a reproducing
kernel, ensuring mathematical completeness and pre-
serving Hilbert space structure. The presence of flux
modifies the kernel and introduces quasi-periodicity in
the analytic domain.
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Applications of the framework were demonstrated
through explicit calculations. We showed how persis-
tent currents in mesoscopic rings arise naturally from
the flux-dependent analytic wavefunctions, and how
AB phase shifts in interference devices are directly
encoded in the quasi-periodicity of the representation.
A systematic comparison with flux-free analytic
methods highlighted the advantages of our approach:
while flux-free methods capture periodic dynamics,
the present framework extends them by including
topological effects central to mesoscopic physics and
flux qubits.

Beyond immediate applications, we discussed broader
implications.  Analytic representations provide a
promising foundation for numerical implementations,
potentially enabling efficient simulations of flux qubits
without large-scale Hamiltonian diagonalizations. The
formalism also generalizes naturally to multi-particle
and interacting systems, where flux can control entan-
glement and correlation effects. Finally, connections
to higher-genus surfaces and non-Abelian topolog-
ical phases suggest that the analytic representation
may contribute to the mathematical foundations of
fault-tolerant quantum computing.

Future Directions

Several avenues remain open for further exploration:

¢ Numerical Algorithms: Develop spectral and
kernel-based methods for simulating flux-dependent
dynamics in mesoscopic devices using truncated
analytic expansions.

¢ Interacting Systems: Extend the representation to
multi-particle systems on compact manifolds, ex-
amining flux-dependent entanglement and collective
excitations.

¢ Topological Generalizations:  Generalize to
higher-genus surfaces and explore the modular
properties of Theta functions in quantum systems.

* Non-Abelian Phases: Investigate connections be-
tween zero dynamics and braiding statistics, with
applications to topological quantum computation.

In summary, the flux-dependent Theta function frame-
work unifies analytic methods and topological quan-
tum physics. It provides new mathematical tools, yields
physically relevant observables, and opens pathways to-
ward future research in mesoscopic systems, quantum
information, and topological quantum computing.
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