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Abstract
Quantum computing (QC) holds the potential to solve classically intractable problems. Although there has been
significant progress towards the availability of quantum hardware, a software infrastructure to integrate them is
still missing. We present Q-AIM (Quantum Access Infrastructure Management) to fill this gap. Q-AIM is a
software framework unifying the access and management of quantum hardware in a vendor-independent and open-
source fashion. Utilizing a dockerized micro-service architecture, we show Q-AIM’s lightweight, portable, and
customizable nature, capable of running on different hosting paradigms, ranging from small personal computing
devices to cloud servers and dedicated server infrastructure. Q-AIM exposes a single entry point into the host’s
infrastructure, providing secure and easy interaction with quantum computers at different levels of abstraction.
With a minimal memory footprint, the container is optimized for deployment on even the smallest server instances,
reducing costs and instantiation overhead while ensuring seamless scalability to accommodate increasing demands.
Q-AIM intends to equip research groups and facilities with purchasing and hosting their own quantum hardware
with a tool simplifying the process from procurement to operation and removing non-research-related technical
redundancies.
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1 INTRODUCTION
Quantum computing, currently in its develop-
mental phase, promises substantial acceleration
of classical computations across various fields
ranging from cryptography to materials sci-
ence [GRTZ02, PAB+20, BBMC20, QBB+21].
Quantum computing scientists are constantly striving
to overcome the limitations imposed by the current
noisy intermediate-scale quantum (NISQ) era to fully
realize quantum computing’s potential.

However, while large private-sector enterprises are
advancing the field through their own hardware,
software, and algorithmic developments, smaller
academic research groups lack direct on-site access to
such resources. Although corporations such as IBM,
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Google, and Amazon offer access to their own or
hosted third-party infrastructure on a pay-to-use basis
over the cloud, fundamental research is limited by re-
stricted privilege policies and physical inaccessibility.
Consequently, the acquisition of small-scale devices
emerges as a viable solution to delve deeper into
hardware and software enhancement studies, especially
since the devices are getting cheaper. Yet, a critical
challenge remains: the lack of a portable, open-source,
and easily integrable software solution for small-scale
hardware integration and provision.

Ultimately, procuring quantum hardware serves not
only to enable deeper interaction with the device but
also to facilitate its utilization on an abstract software
level. This requires granting access to the resource over
the host’s network infrastructure, and possibly even
beyond that, by a service either hosted in the cloud
or also on-premise, dependent on the requirements
and capabilities. For instance, a device could be made
accessible to external users, such as students, for
educational purposes or to demonstrate advancements
to a broader audience. Yet, the absence of a common,
open-source integration platform forces researchers
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to spend valuable time and expertise developing such
a solution on their own. Such efforts can detract
from their primary focus of advancing scientific
knowledge. A flexible, streamlined, and universally
adaptable integration software is therefore crucial,
not only to eliminate redundancies, but also to ensure
compatibility with existing workflows.

This work presents Q-AIM, a flexible, streamlined,
and universally adaptable quantum integration work-
flow designed to address key challenges in quantum re-
source utilization, particularly for small enterprise and
academic research groups. Typically, quantum systems
are equipped with peripheral classical hardware pro-
viding a hardware- and vendor-dependent interface to
the quantum computer, facilitating their use on an ab-
stract software level. But, without a standardized, open-
source platform, researchers face significant hurdles in
integrating quantum systems into existing workflows.
To eliminate redundancies and enhance compatibility
of the necessary integration software solution, we make
the following contributions:

• Unified and Portable Platform: A Docker-based,
microservice architecture ensures seamless deploy-
ment and scalability across various infrastructures,
e.g., on a local machine, server, and cloud.

• Flexible Access and Control: Offers resource ac-
cess via multiple abstraction levels (from algorith-
mic to pulse-level) with a role-based permission
scheme for secure and tailored utilization among di-
verse user groups.

• Classical Workflow Integration: Standardized and
flexible APIs enable easy hybrid computing, repro-
ducibility, and cross-institution collaboration with-
out major infrastructure changes.

• Prototype Validation: A lightweight prototype
demonstrating adaptability and efficient resource
usage across on-premise and cloud infrastruc-
tures, supporting broad research and educational
application possibilities.

2 BACKGROUND
Quantum computing offers great potential, but the inte-
gration of quantum hardware into classical workflows
faces major challenges due to proprietary systems and
lack of standardization. This chapter provides a brief
overview of quantum instruction workflows and exist-
ing integration solutions.

2.1 Quantum Resource Workflow
Executing quantum algorithms on hardware requires
translating high-level logic into device-specific opera-
tions through multiple abstraction layers, as shown in

Fig. 1. The process begins with circuit definition in
hardware-agnostic frameworks like Qiskit [WVMN19],
Cirq [OTC+20], or Braket [GARV+22], analogous to
classical algorithm development. The quantum equiv-
alent of compilation is transpilation, which generates
an intermediate representation (IR) [CVPP+25]. This
involves both hardware-independent optimizations
and hardware-dependent adaptations to match the
processor’s native gate set [CAF+24]. Tools like
BQSKit [YIL+21] perform these transformations,
optimizing circuit depth while respecting hardware
constraints. Common IR formats include Open-
QASM [CBSG17, CJAA+22], serving as a quantum
assembly language.

The final stage converts the IR into machine instruc-
tions, typically implemented as precisely controlled mi-
crowave pulses that manipulate qubit states. This com-
pletes the translation from abstract algorithm to phys-
ical implementation, with compiler comparisons avail-
able in [SBL+21]. As in classical computer science,
assembler is not yet an instruction at machine level, but
is used to communicate with remote resources if used.
Therefore, the last step of instruction modification is the
translation to machine code (Machine Instructions). In
quantum computing, this oftentimes means microwave
pulse modification where specific pulses modify the
state of the quantum system likewise to an instruction
in the high-level abstraction implementation.

To execute algorithms on real quantum hardware, two
key aspects must be considered. First, as shown in Fig.
1, any algorithm or circuit must be transpiled into the
underlying hardware’s instruction set. Typically, algo-
rithms are developed in a hardware-agnostic manner,
requiring translation into device-specific operations.

Second, access to quantum resources must be estab-
lished. Providers usually offer cloud-based access via
APIs, treating quantum computers as specialized re-
mote resources. They enforce restrictions on supported
IR formats, interaction methods, and security proto-
cols, requiring authentication and permissions. Access
is managed through an API, which handles data flow to
and from the resource. In Fig. 1, the API call can oc-
cur at any stage between circuit definition and machine
instructions, depending on the service. After execution,
results are returned in a provider-defined format.

2.2 Analysis of Related Work
Recent work explores integrating quantum devices
with classical resources through two paradigms: GPU-
like indirect access [SRKS22, RTL+22, HML+21] or
API-driven direct access [MFML23, SP21, GHG+24,
HML+21,JATK+24,GARV+22,OTC+20]. Ruefenacht
et al. [RTL+22] categorize integration architectures
from loosely-coupled (on-premise) to tightly-coupled
(on-chip) for HPC workloads. While Schulz et
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Figure 1: Instruction abstraction levels in quantum
computing. From high-level circuit design (highest
abstraction) to hardware-independent and hardware-
specific intermediate representations (IR), ultimately
becoming device-specific machine instructions (no ab-
straction) to be used with the quantum device.

al. [SRKS22] advocate for unified software stacks,
Humble et al. [HML+21] note that current prototypes
rely on primitive client-server interactions unsuitable
for true acceleration.

Precisely, these early-stage systems are crucial for aca-
demic research and motivate our work: an open-source
platform enabling secure, low-overhead access to quan-
tum devices across environments (on-premise/cloud)
via Docker containers. This addresses the gap in ac-
cessible solutions for small-scale research, contrast-
ing with service-oriented approaches [MRV22,NUB24,
GCA+21] that abstract hardware for enterprise use.
For instance, Grossi et al. [GCA+21] propose quantum
FaaS via HTTP APIs, while Nguyen et al. [NUB24]
mitigate vendor lock-in.

Our focus reverses this paradigm, instead of high-level
abstraction, we enable fine-grained control (e.g., pulse-
level access) critical for research. Concurrent work by
Beck et al. [BBB+24] targets HPC-integrated quantum
acceleration for large institutions, whereas our solution
democratizes access for smaller groups, streamlining
device integration from procurement to experimental
use.

3 DESIGN CONSIDERATION
As described in Section 2, integrating quantum comput-
ing resources into existing research and industrial work-
flows requires careful orchestration of software across
multiple domains. However, current quantum solutions
are tied to specialized hardware and proprietary envi-
ronments, limiting applicability and creating barriers.

To address this, we propose Q-AIM: a standardized,
portable workflow and corresponding software imple-
mentation enabling seamless integration of quantum re-
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Figure 2: Overview of the quantum computation work-
flow. The larger, red box (right) indicates classical hard-
ware, the smaller, green one (left) the quantum sys-
tem. The problem is defined as quantum circuit at any
abstraction level and undergoes transpilation until ma-
chine instruction level is reached. Communication be-
tween the classical and quantum system is facilitated
through API calls.

sources. In Fig. 2, required process steps are shown
in blue, classical services in the red box, and vendor-
dependent quantum resources in the green box. There-
fore, with Q-AIM, quantum circuit design supports var-
ious abstraction levels. An optional simulation step al-
lows verification before using remote quantum com-
puters. All services in the red box are abstractions
provided by the software, with each component re-
placeable or customizable, allowing granular control
for users and providers. This flexibility supports diverse
requirements. Due to varying execution environments
and access control needs, we use REST APIs for broad
compatibility across languages, platforms, and archi-
tectures.

Another key design aspect is the decoupling of quantum
hardware, ensuring software operates independently of
specific hardware. Tasks like qubit manipulation, in-
struction execution, and measurement are handled by
the hardware and its peripherals. Together with mi-
croservices, these form the Q-AIM backend.

4 METHODOLOGY
The key principle of the proposed approach is to ensure
that classical workflows remain largely unaffected by
the introduction of quantum computers. Instead of hav-
ing to rebuild or heavily modify pre-existing computa-
tional frameworks, end-users can embed quantum tasks
and pipelines into their established processes. The ef-
fectiveness and versatility of the proposed system are
underpinned by four core methodologies:

1. Fully Integrated Classical Workflow: Based on the
design considerations as mentioned in Section 3, the
classical quantum computing workflow, i.e., the steps
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from algorithm definition to machine instruction, is a
multi-stage process that spans tasks from algorithm de-
velopment to optimization. Depending on the manu-
facturer and application scenarios, the code often needs
to be compiled into an appropriate representation, such
as gate-level or pulse-level instructions, to execute on
a quantum computer. To allow users to operate at dif-
ferent levels of abstraction, it is crucial to account for
these variations during the integration workflow.
To support this flexibility and maintain vendor indepen-
dence, the entire classical quantum computing work-
flow is treated as a black box and integrated as a uni-
fied entity within our infrastructure. This abstraction
ensures seamless interaction between the classical and
quantum workflows without requiring users to manage
low-level specifics or adapt to API changes, thereby
enhancing usability and interoperability. Therefore,
the classical workflow is incorporated into our integra-
tion pipeline as a self-contained component and aug-
mented with additional functionality. These functional-
ities range from custom user management, authentica-
tion services, and access control to result visualization
and system monitoring. This approach allows users to
work with different programming languages at differ-
ent levels of abstraction while taking advantage of the
unique features of different quantum hardware back-
ends. It also supports adaptability to emerging quantum
computing platforms, ensuring that the architecture is
future-proof.
2. Encapsulated System Architecture: To enable a
standardized and transparent quantum computing work-
flow, we rely on an encapsulated system architecture
that decouples the software layer from the underlying
quantum computing hardware. This architecture acts as
an abstraction layer that simplifies and hides the com-
plexity of the individual components. As shown in
Fig. 3, the system is divided into two key segments: the
Q-AIM software and the quantum computing hardware.
The central component of this system architecture is the
API gateway, which abstracts the underlying microser-
vices and prevents direct access or communication be-
tween clients and service components. This isolation
significantly simplifies implementation for both clients
and microservice applications, as the complexity of the
application is decoupled from its clients. Another im-
portant element is the Reverse Proxy that offers addi-
tional functions that go beyond the simple forwarding
of requests. It assigns the physical ports to those of
the encapsulated environment and acts as an intermedi-
ary that communicates with the server on behalf of the
client(s), forwards requests and returns responses. The
proxy is located at the edge of the API gateway, which
centralizes the processing of API requests and enforces
additional security policies such as authentication, au-
thorization and access control, as well as other func-
tions not covered by the microservices.
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Figure 3: Microservice-based architecture of Q-AIM.
It facilitates secure client interactions via HTTPS and
a reverse proxy, providing access to quantum systems
through a structured microservice architecture. The
API Gateway manages authentication, authorization,
and orchestration, while the microservices provide the
software’s functionalities.

As the result, our architecture provides a standardized
way for those to communicate, interact thus allows for
modularity, scalability, and adaptability, making it pos-
sible to integrate the services seamlessly while main-
taining a consistent and manageable architecture.

3. Micro-Service-Based Software Architecture: To
meet the challenge of a standardized, portable integra-
tion workflow, in this work we develop a microservice-
based software architecture that enables quantum com-
puting hardware to be integrated into existing and future
infrastructures in a consistent manner. A key aspect of
Q-AIM is therefore portability and transparency.

Lightweight virtualization technologies, i.e., contain-
ers such as Docker or Apptainer are highly portable.
The isolated nature of container virtualization also en-
sures that all required dependencies are bundled in the
container and services can be quickly deployed and
replicated on different hosts. As container-based soft-
ware deployment is typically based on a microservice
architecture, the functionality of the software can be
customized and extended according to user-specific re-
quirements. This gives Q-AIM greater versatility and
adaptability, which is beneficial for research institutions
and companies alike.

Overall, Q-AIM’s microservices-based architecture not
only reduces the dependency on specific vendors, but
also allows researchers and developers to transfer and
scale their work to different environments [MWB23].
This is particularly important for reproducibility and
enables the building of a community that promotes the
exchange of ideas, best practices and resources to fur-
ther advance the development of quantum computing
technology.
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4. Flexible and Fine-Grained User Management: An-
other key challenge is managing access from differ-
ent environments with corresponding user affiliations.
Users can generally be categorized into internal and ex-
ternal groups, each requiring specific levels of access to
quantum resources. For example, a physicist conduct-
ing physical experiments on a quantum computer needs
easy access to enter signals or waveforms. In contrast,
users from business or other fields usually require high-
level access to test their algorithms or circuits on the
quantum computer.

To enable fine-grained access control to quantum re-
sources and flexible user management, it is essential
to integrate different user groups into a single infras-
tructure, manage them effectively and meet their differ-
ent access requirements. This requires the integration
of the industry standard LDAP [Ser06] protocol into
our solution for authenticating internal users. In addi-
tion, the system should support the creation and man-
agement of a special user database for external users
to ensure seamless integration and secure access for all
user types. As interaction with quantum computing re-
sources takes place exclusively via the API gateway,
Q-AIM enables authentication for different user groups
and supports fine-grained authorization, ensuring that
users can only interact with the resources that corre-
spond to their assigned roles.

5 PROTOTYPE IMPLEMENTATION
In the following, we present an early prototype imple-
mentation of our portable, unified, and generic quan-
tum computing integration workflow. The integration
of self-written or third-party libraries as a service in the
example implementation of our microservice architec-
ture underlines the aforementioned adaptability. Sim-
ilarly, other entities can implement different services
specific to their use cases.

5.1 Container-based Deployment
From the high-level system architecture shown in
Fig. 3, it is clear that deploying the Q-AIM application
requires a complex environment with a number of mi-
croservices working together. To improve transparency
and portability in the deployment process, Docker con-
tainers are used to ensure consistency. Also, a Docker
Compose file is used to simplify the management of
multiple microservices and their dependencies within
the application. Consequently, this approach facilitates
the deployment of the entire application environment
with a single command, i.e. docker compose up.

To provide an overview of the main services of Q-AIM,
as shown in Listing 1, the services are described below:

• Database Service: This initiates a PostgreSQL
database utilizing the official Postgres Docker

services:
database:

image: postgres
...

authentification:
depends_on:

- database
image: jboss/keycloak:11.0.3
...

Q-AIM-API:
image: fastapi:dev
...

Q-AIM-Frontend:
image: Q-AIM:dev
...

reverse-proxy:
image: nginx:alpine
...

monitoring:
image: gcr.io/cadvisor/cadvisor:latest
...

...

Listing 1: Overview of the microservices and their im-
ages in the docker compose file.

image. To ensure persistent storage of the database
data, a Docker volume is created alongside.

• Authentication Service: Utilizing the official Key-
cloak Docker image, this service delivers identity
and access management functionalities. It relies
on the database service and necessitates a Keycloak
configuration file. For illustrative purposes, environ-
ment variables for the Keycloak administrator user,
password and other settings are also configured via
the docker compose file.

• Q-AIM-API Service: This employs the Docker im-
age fastapi:dev and is built using a custom Dock-
erfile, which sets up an environment tailored for a
FastAPI application and installs specific dependen-
cies.

• Q-AIM-Frontend Service: Built upon the Q-
AIM:dev Docker image using a custom Dockerfile,
this Dockerfile ensures that the actual Angular
Web-Application is built in a Node.js environment
and then the resulting build is deployed within an
NGINX container. The NGINX container is used to
serve the static files of the Angular application and
provide the configuration for the web server.

• Reverse Proxy Service: Based on the Docker im-
age nginx:alpine, this service initializes an NGINX
proxy server. Configured with a corresponding con-
figuration file and SSL certificates, the proxy server
forwards incoming requests to various services pro-
vided within Docker containers.

• Monitoring Service (Optional): Leverages the of-
ficial CAdvisor Docker image to efficiently gather
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Figure 4: Representation of the first authentication pro-
cess for an approved user attempting to run code on a
protected quantum computing resource.

and present container statistics. To facilitate access
to files or directories within the host system, it is im-
perative to include relevant directories or files from
the host within the container.

Overall, the division of microservices illustrates the ba-
sic principles of modern software development and ar-
chitecture. This approach promotes customizability,
scalability, security and reproducibility in application
deployment. By using Docker and Docker Compose,
both developers and professionals can seamlessly adapt
Q-AIM to their specific requirements and deploy it ef-
ficiently in their infrastructure.

5.2 Authentication Workflow
An exemplary workflow accessing a quantum device as
a protected resource is depicted in Fig. 4. During the
user’s initial access, they are required to provide their
credentials. Only after the identity and access manage-
ment tool Keycloak validates the provided credentials
and returns an authentication code, including an ac-
cess token holding information about the authenticated
user’s roles and permissions, an ID token with general
information about the authenticated user, and a refresh
token, does the user gain access to the quantum com-
puter frontend component on the Angular webapplica-
tion. Provided quantum code of the user on the fron-
tend component serves as input data to the API endpoint
managing access to the protected quantum resource.
The API therefore validates the provided authentication
code at the identity and access management tool and
checks the user’s permissions in the access token. If
the user is permitted, it controls the bidirectional flow
to and from the quantum resource. Lastly, the result is
displayed on the frontend web application.

5.3 Q-AIM User Interface
The Q-AIM frontend serves as a user-friendly gateway
to access quantum computing resources. To safeguard

the underlying endpoints and enable fine-grained per-
mission management, integration of the Keycloak ser-
vice and authentication functionality has been embed-
ded within the Angular application. As can be seen
from the Fig. 5 1⃝, users must be authenticated to
access certain resources and have certain permissions.
Furthermore, the authorization framework’s distinction
between groups and roles facilitates the assignment of
users to various domains, institutions, and systems, al-
lowing for the allocation of grouping-specific roles. To
exemplify the granularity of rights management, the
prototype establishes two groups, i.e., internal and ex-
ternal and each featuring user or admin roles.

Figure 5: Q-AIM Web User Interface. Users can pro-
vide code and runtime parameters in different formats,
monitor resource utilization, and visualize results and
metadata.

Depending on whether the user is already authenticated
via the authentication server, the user is either redi-
rected to the login page to process the authentication
workflow as shown in Fig. 4 or to the interface for the
corresponding compute resources, as shown in Fig. 5.

A standardized user interface ensures a seamless work-
flow for accessing different backend functionalities. As
can be seen in 2⃝, the resource utilization of the re-
spective quantum resource is displayed. 3⃝ shows, Q-
AIM currently supports OpenQASM source code or
Pauli representation as an input. The Pauli represen-
tation takes advantage of the fact that the Pauli rota-
tions together with the controlled-NOT (CNOT) oper-
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ation form a complete basis set, which means, every
computation can be represented using appropriate Pauli
and CNOT operations. This not only shortens but also
simplifies the code input, enhancing its portability.

An exemplary circuit in OpenQASM format is partially
displayed and used in the example run depicted in Fig.
5 3⃝. Since Qiskit simulators are used in this work
for demonstration purposes and many devices accept
OpenQASM as IR, the library converting the Pauli rep-
resentation into OpenQASM is part of the dependencies
for the API microservice and ships with the image by
default. Users have the option of either entering their
code via the editor or uploading the corresponding file.

As many circuits performing the algorithm’s desired
computation need to be parameterized, users must be
able to provide the parameters. They can do so either
by using a dictionary, naming the specific variable to be
set and its value, or as a list (array), only providing the
variables’ values which are then assigned in order of
appearance in the circuit. This provision is done on the
webpage shown at 4⃝. A prominent example of an algo-
rithm necessitating parameterization is the Variational
Quantum Eigensolver (VQE) [JJDRM23, PMS+14, JJ-
DRM22]. Since parameter optimization is hardware-
dependent, a set of optimized parameters obtained on
one quantum device cannot be directly fixed into the
circuit while ensuring reproducibility across different
hardware. However, these parameters can still serve as
a good initialization point, reducing the optimization ef-
fort on other devices. Therefore, the optimized param-
eters are included in the result object.

After submission, the provided code is executed via the
API on the hardware-specific backend. Following suc-
cessful execution, the resulting data and metadata are
visualized as interactive diagrams or JSON objects as
shown in 5⃝ of the user interface, with the option of
downloading them as CSV files or image files.

5.4 Q-AIM API
The Q-AIM API is designed to handle a variety of re-
quests related to both quantum computing tasks and
user-specific operations. It is developed using Python
and the FastAPI framework and serves as the backbone
for processing tasks. Since real quantum hardware is
not available for testing, the API utilizes simulators to
query as endpoints instead, with the Qiskit library em-
ployed for quantum computing task execution using its
Qasm Simulator [Qis25], a noisy quantum circuit sim-
ulator backend.

Primarily, an API comprises public and private
endpoints. Public endpoints are accessible without
requiring authentication, enabling direct access to the
endpoints. Conversely, protected endpoints necessitate
authentication via a Json Web Token (JWT), issued by
Keycloak, for example. Authentication is facilitated

through an authentication function auth(), assigned to
endpoints requiring authentication as a dependency
function using FastAPI’s own dependency resolution
mechanism. The function issues the query to the
identity management using an OAuth2.0 scheme, as
described in Section 5.2. For this work, only private
endpoints are used to showcase the finely granulated
permissions management. These include the endpoint
/api/user/me, which retrieves information about the
authenticated user. Furthermore, access to endpoints
responsible for quantum computing is restricted to
authenticated users with appropriate permissions. For
illustrative purposes, the prototype offers four more
endpoints: for uploading and processing OpenQASM
code (/api/qc/qasm/{upload, code}), one
for each uploading a file and coding on the web
page, and the same for code in Pauli representation
(/api/qc/pauli/{upload, code}). The cal-
culated results are subsequently returned to the Q-AIM
frontend as part of the response.

6 EVALUATION
In the following, we present an evaluation of the inte-
gration workflow’s key attributes, focusing on its porta-
bility and lightweight nature, designed to seamlessly
integrate with diverse computing environments. We
examine these aspects using different combinations of
hardware, software, and hosting paradigms in the fol-
lowing.

6.1 Test System Setup
To assess the portability of the integration workflow’s
software implementation, our prototype was deployed
and tested on three distinct environments: (1) a lo-
cal machine, (2) an on-premise hosted server, and (3)
a cloud instance. These environments span different
hardware architectures and operating systems. This
multifaceted evaluation aims to validate Q-AIM’s claim
of adaptability to diverse computing environments, em-
phasizing its suitability for individual users with varied
system configurations and requirements. The specifica-
tions for the different evaluation configurations is de-
scribed in Table 1.

Parameter Cluster Node Local Machine Cloud
CPU Intel Xeon E5-2660

v2
Intel i7-12700H Intel Xeon E5-

2696V4 (vCPU)
Cores 20 20 2
RAM 128 GB 32 GB 8 GB
OS Rocky Linux 9 Ubuntu 24.04 Debian GNU

Linux 12
Network Ethernet and Infini-

Band (FDR)
Ethernet Public Internet

Table 1: Hardware settings for the evaluation setups.

First, we demonstrate a proof of concept by deploying
on a local machine, i.e., a personal computer aimed at
stimulating real-world scenarios where end-users with
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diverse machines might seek to utilize the software im-
plementation. The successful deployment on the au-
thor’s machine confirms that the API functions as in-
tended, providing a sound foundation for further evalu-
ation of more sophisticated hosting paradigm scenarios
in the following.

Second, to validate the container’s applicability in
enterprise settings, we deployed it on real server in-
frastructure belonging to the Modular Supercomputing
and Quantum Computing (MSQC) research group at
Goethe University, Frankfurt am Main, Germany. As
part of this process, we reconfigured a compute node
from the cluster to function as an independent server,
ensuring it could operate separately from the main
cluster. This emphasizes its applicability in larger
research groups and enterprise settings, capable of
hosting on-premise solutions, providing full control
over the whole workflow.

Third, given the increasing reliance on cloud services
in enterprise environments, we also test our solution
on Google Cloud using an E2-standard-2 instance, in-
tended for moderate use, providing a good trade-off
between cost and performance. This deployment is
designed to evaluate the feasibility of using the solu-
tion in environments with limited computing resources,
such as startups, small businesses, or individual de-
velopers who often prioritize cost-effective cloud so-
lutions. The successful deployment, despite the lim-
ited resources of the cloud instance, underscored the
solution’s lightweight design and its ability to perform
efficiently in resource-constrained cloud environments.
Additionally, deploying the solution in the cloud high-
lights its potential for scalability. Without requiring
any modifications to the docker image itself, the con-
tainer setup can be scaled to more powerful instances,
enabling it to handle more demanding workloads as
needed.

The consistent behavior observed across different sys-
tems and settings underscores the portability and uni-
versality of the composed Q-AIM Docker image, sub-
stantiating its viability for widespread adoption.

6.2 Result Discussion
The ability to deploy and use the sample software im-
plementation on all three distinct infrastructure con-
figurations showcases the portability of the proposed
solution. Users are not limited to a single hosting
paradigm. From the most straight-forward solution,
hosting on personal hardware, to more sophisticated
solutions, like cloud-hosting, to ultimately fully on-
premise server hosting, every use case can be covered
by Q-AIM.

Changing the hosting paradigm, e.g., due to higher de-
mand, is just a matter of copying the image and letting it

Figure 6: Grafana-based Monitoring Dashboard visual-
izes memory and CPU usage, as well as network traffic
(receiving and transmitting) for the different contain-
ers in Q-AIM running on the local machine evaluation
setup.

run on the new host, providing the exact same function-
ality and equal behavior. This reduces the dependency
on a particular infrastructure and allows the application
of the software to diverse users and use cases.
The evaluation of the portability made it necessary to
deploy the same image on different backends, underlin-
ing another key aspect of the docker-based microservice
implementation: its reproducibility. The same image of
the software, with all its configurations specifically de-
signed for our use case, was easily distributed across
multiple infrastructures, which can be understood as
providing it to different enterprises. Ultimately, this
means enabling other users to use a fully fledged and
specifically tailored implementation and reduces the
overhead of creating a common basis for further re-
search/collaboration.
Another critical aspect of the evaluation pertains to the
integration workflow’s resource efficiency. To investi-
gate resource consumption, the composed Docker con-
tainer incorporates a resource monitoring software im-
age, cAdvisor, as a microservice. Running the Q-AIM
container automatically starts the monitoring provided
by cAdvisor. Utilizing this library, we examined the
container’s consumption of CPU and memory usage for
logging in and running the example as shown in Fig. 6.
Notably, the container exhibited remarkable efficiency,
utilizing less than 3 GB of memory in our configura-
tion, whereby Docker uses free memory for caching and
frees it as soon as it is needed.
The findings of the aforementioned evaluations under-
score the integration workflow’s software implementa-
tion’s pivotal attributes: portability across diverse sys-
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tems and resource-efficient operation. The demon-
strated success in real-world scenarios, shown by the
seamless deployment on different server infrastructure,
positions Q-AIM as a promising solution for users seek-
ing a lightweight, unified, and universally deployable
software solution to incorporate quantum computing
hardware and offer access to an on-premise device.

7 CONCLUSION

We propose Q-AIM, a vendor-agnostic single-access
solution for integrating quantum resources. Designed
for research groups and small entities, it streamlines
quantum device management from procurement
through usage. The API-based solution provides
administration tools with enhanced security for remote
access while maintaining flexibility across diverse
infrastructures. Implemented as an open-source
containerized microservice, Q-AIM offers easy mod-
ification and maintainability. Our prototype currently
interfaces with quantum simulators, demonstrating
real-world integration scenarios.

Q-AIM’s Docker-based deployment supports various
infrastructures - from personal machines to cloud and
on-premise servers - requiring minimal expertise for
setup. Its open-source nature enables customization for
specific hardware needs, ensuring complete vendor in-
dependence. We are implementing Q-AIM with Goethe
University’s Modular Supercomputing group for their
first quantum device, enabling controlled access both
within and beyond the research group. Future devel-
opments include integrating error mitigation protocols
[JJDRM20, DPJ+24] and multi-hybrid quantum algo-
rithms [Jat24].

The platform provides precise low-level hardware con-
trol through a unified interface, with planned extensions
for quantum hardware monitoring and hybrid comput-
ing support. By exposing quantum resources via API,
Q-AIM enables classical systems to leverage them as
accelerators, potentially using RPC or pragmas for run-
time access. The production version will serve as a
comprehensive quantum hardware management solu-
tion, streamlining integration for researchers.

As quantum computing advances beyond the NISQ era,
tools like Q-AIM are essential for bridging current lim-
itations and future capabilities.
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