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ABSTRACT

Recently, quantum computing emerged as a paradigm for solving systems of linear equations. However, large
condition numbers significantly increase the computational complexity of quantum linear equation solvers. In this
work, a new quantum preconditioning approach called variational quantum eigen-decomposition (VQED) is pro-
posed, where the preconditioner is defined as a weighted projector onto the subspace spanned by the eigenvectors
of a matrix. A variational quantum algorithm with projection-based deflation is performed to calculate eigenvalue-
eigenvector pairs for constructing the preconditioner. The proposed VQED method is used with quantum singular
value transformation to solve linear systems for mechanics examples. It is demonstrated that the VQED can reduce
the condition numbers to as low as 1.03, which is a significant improvement over the original condition number.

Keywords

Quantum linear system algorithm, Preconditioning, Variational quantum algorithm, Quantum singular value trans-

formation, Quantum scientific computing.

1 INTRODUCTION

Most differential equations in computational mechanics
problems can be numerically linearlized and solved as
systems of linear equations. Given a coefficient matrix
A and a vector b, the goal is to obtain the solution vector
x such that Ax = b. However, solving very large linear
systems is still computationally expensive when high-
fidelity solutions for complex systems are desirable.

Recently, quantum computing emerged as an alterna-
tive paradigm for scientific computing, where qubits
encode information and quantum phenomena of su-
perposition and entanglement are utilized for compu-
tation. Particularly, several quantum linear system al-
gorithms have been proposed. The first algorithm is
the Harrow-Hassidim-Lloyd (HHL) algorithm [Har(09],
where the quantum linear systems problem is formu-
lated as the eigenvalue problem, and the inverse quan-
tum Fourier transform is utilized for phase estimation to
obtain the eigenvalues. In the variational quantum lin-
ear solver [Bra23], a variational quantum circuit is con-
structed to minimize the residue. Classical optimiza-
tion is used to find the optimal parameters. The third
approach is utilizing quantum singular value transfor-
mation (QSVT) [Gil19, Mar21] to obtain the inverse of
the coefficient matrix, which is approximated with the
Chebyshev expansion. Although the computational ad-
vantages of quantum linear solvers over classical coun-
terparts were shown, the accuracy and efficiency of
these quantum methods are sensitively dependent on
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the condition number of the matrix. Large condition
numbers significantly increase the computational com-
plexity of these algorithms, which is quadratically de-
pendent on the condition number (e.g., &(x?/¢) for
HHL algorithm with condition number k and target
level of error €). Therefore, reducing the condition
number is necessary to improve the accuracy of the so-
lution given the available computer resources.

Preconditioning is an effective numerical approach to
reduce the condition numbers of matrices and improve
the numerical accuracy in classical linear equation
solvers. In this process, a preconditioner matrix M
transforms the original linear system into MAx = Mb.
M 1is chosen so that the condition number of MA is
much smaller than the condition number of A. Differ-
ent preconditioning methods have been developed for
numerical solvers on classical computers. However,
very limited work has been done for quantum precondi-
tioning, which is to obtain M with quantum algorithms.
One approach is to implement the classical sparse
approximate inverse method on a quantum computer
[Clal3]. In this method, a preconditioner approximates
the inverse of the coefficient matrix as M ~ A~!. Each
row of the preconditioner is obtained by solving a linear
system with the vector on the right-hand side formed
with an identity element. However, the preconditioning
in [Clal3] relies on a quantum oracle without providing
the details of implementation. Another approach is
the quantum circulant preconditioner [Shal8]. The
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inverse of Toeplitz matrix is proved to be the optimal
circulant preconditioner that makes the preconditioned
coefficient matrix close to the identity matrix. The
circulant preconditioner is easily implemented using
quantum Fourier transform. A third method is the fast
inverse method [Ton21], where the original matrix is
decomposed into a sum of fast-invertible and perturba-
tion matrices. The preconditioner is the inverse of the
fast-invertible matrix, which is block-encoded in the
QSVT circuit to solve the linear system. The norm of
the fast-invertible matrix is much larger than the norm
of the perturbation matrix so that the preconditioner
is approximately equal to the identity. However, the
method is not generalizable since the fast-invertible
matrix is assumed to be non-singular, Hermitian, and
unitarily diagonalizable.

In this work, a new quantum preconditioning approach,
variational quantum eigen-decomposition (VQED), is
proposed. The preconditioner is defined as a weighted
projector onto the subspace spanned by the eigenvec-
tors of the coefficient matrix. The eigenvectors are con-
structed recursively. A trial state is projected onto the
subspace spanned by the previously calculated eigen-
vectors to determine a new orthogonal eigenvector. The
proposed preconditioning approach can be integrated
with different quantum linear equation solvers. Here,
QSVT is used to demonstrate its capability.

In the remainder of the paper, the proposed VQED pre-
conditioning method is described in Section 2. Experi-
mental settings and evaluation criteria are introduced in
Section 3. The method is demonstrated with two me-
chanics examples in Section 4. The results are summa-
rized and future extensions are discussed in Section 5.

2 PROPOSED VARIATIONAL QUAN-
TUM EIGEN-DECOMPOSITION
PRECONDITIONER

Let A € C"*" be a positive semi-definite Hermitian ma-

trix representing a physical or engineering system, such

as a stiffness matrix in structural mechanics. A can be
decomposed as

AZZM‘MQ <u,", (1)
i=1

where A;’s are non-negative eigenvalues and |u;)’s are
orthonormal eigenvectors.

Eigen-decomposition

Preconditioning is achieved by constructing a precondi-
tioner M such that MA ~ I. MA is subsequently used in
quantum linear solvers to improve the accuracy of the
solutions.

In VQED, the preconditioner is iteratively calculated in
a subspace spanned by the eigenvectors of A. When A is
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singular, a lower-rank approximation of M is obtained
as

Lol
Mk:ZI|”i> (il 2)
i=1

where k < r. Then, we define

k
M A ~ Z|u,> <M,| (3)
i=1

L

as a projector onto the span of eigenvectors with the k
smallest eigenvalues. The condition number of Eq. (3)
could be reduced when higher-order eigenvectors are
iteratively added to expand the subspace of M. When
A is non-singular, M;A cannot be approximated as the
identity. Instead, it is necessary to construct the com-
plete eigenspace as

|
M= ; Py |uz) {ui “4)

sothat M = AL,

Variational Eigenvector Computation

In the VQED method, a variational quantum algorithm
[Per14] is used to iteratively extract eigenvectors of A
with the k smallest eigenvalues in increasing order, sim-
ilar to the deflation technique [Hig19].

The variational circuit is constructed based on the
Pauli basis. A parameterized hardware efficient ansatz
[Kanl7] is used to prepare a quantum state |y(0))
from the initial state [0)“", where 7 is the number of
qubits to encode A. The objective is to find a vector
of parameters @" so that the parameterized quantum
state |2(0")) is equivalent to an eigenvector |uz). To
calculate each |uy), O is optimized so that |4(0)) is
orthogonal to the previously obtained eigenvectors. For
|2(0)), O is omitted to |#) in the following when it is
clear in the context.

The variational quantum algorithm is first applied to ob-
tain

0" = argminRe[(y(O) AlV(0)] ()

such that |y(8*)) = |a;) and A, = (i |A|d).
Recursively, a projection-based deflation is applied to
ensure that the parameterized states are orthogonal to
each other. Given the previously computed eigenvec-
tors {|@),...,|dx_1)}, the non-normalized vector z is
calculated as

~
|

1

;) (i w(0)), (6)

)
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The corresponding eigenvalue is then calculated as
A (8) =Re[(i(8)|A |i(8))]. ®)

The minimum value of Eq. (8) is A =
|utg)-

After calculating all k eigenvalues and eigenvectors,
a spectral preconditioner defined in Eq. (2) is con-
structed. This matrix, which approximates A~!, is
spanned by the computed eigenvectors.

A when i) =

Quantum Singular Value Transformation
The preconditioner M}, can be used in different quan-
tum linear solvers. Here, we use QSVT to demonstrate.
QSVT consists of an alternating sequence of block-
encoding and projector-controlled phase-shift opera-
tions [Mar21]. Suppose that M;A is decomposed as
r

MA =Y oi|wi) (vil, )
i=1
where 0; is the non-negative real singular value of M;A,
[wi) is the left singular vector, and |v;) is the right sin-
gular vector. Given a block-encoding of M;A in a uni-
tary matrix U, the location of the block-encoded matrix
can be determined as M;A = I1,,UTI, by the projectors

-
=) wi) (wil, (10)
i=1

and ,

I =) |vi) (vil, (11)
i=1

which are spanned by its singular vectors. In the

projector-controlled phase-shift operations IT,, (@) and
I1,(¢), each projection |w;) {(w;| in Eq. (10) or |v;) (v;|
in Eq. (11) controls a z-rotation applied on an ancilla
qubit.

The QSVT sequence depends on the parity of the matrix
polynomial. If the parity is odd, then the sequence is
defined as

(d-1)/2

U(9) =1L, [T M(92)U T (92)41)U

Il
-

12)

where

Py(MA) : Zﬁ o;) |wi) (vi
i=1
is an odd polynomial. Otherwise, if the parity is even,

then the sequence is defined as

13)

d/2
[T10(2-)U T (2))U
=1
:{ ﬂe({"IkA) ]’ (14)
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where
.

Y, Ze(01) |vi) (v

i=1

Po(MA) = (15)

is an even polynomial.

In linear systems problems, the inverse of M;A with
non-zero singular values is defined as

r

=¥ i Owil.

i=1 "1

(MA) ™! (16)

QSVT method can be utilized to find a polynomial
P,(0;) = 1/0; such that

r

(M A)™ Z

o (0;) [vi) (wil. a7

3 EXPERIMENTS

The quantum preconditioning method is demonstrated
with two examples of solid mechanics. The first exam-
ple is a truss structure, whereas the second example in-
volves a Messerschmitt-Bolkow-Blohm (MBB) beam.

l repetitions

Iq1>
2> Ry(6:) HR:(61)
|g3) R,(65)
|ga) Ry(e4) R,(69)

R:(610+101)

Ry(610+51)

|gs) R:(610)

Figure 1: Hardware efficient SU2 ansatz used to com-
pute eigenvalues and eigenvectors of A for VQED.

The proposed preconditioner was tested on systems of
32 linear equations derived from the partial differential
equations. Eigenstates were prepared using hardware
efficient SU2 circuit in Figure 1 with / repeated layers.
With this circuit, M was constructed by preparing 32
eigenvalue-eigenvector pairs. The optimization is per-
formed using the classical sequential least squares pro-
gramming (SLSQP) algorithm [Kra88]. 200 iterations
were performed to calculate each eigenstate. Condition
numbers of MA were computed for ten values of / rang-
ing from one to ten. A total of 5 random seeds were
tested for each value of /.

Two metrics are used to assess the performance of the
VQED method. The first metric is the fidelity of the
calculated solution. The fidelity is defined as

F = {xclxg) |, (18)

where |x.) and |x,) are the actual and estimated solu-
tions, respectively. The second metric is the relative er-
ror of the calculated solution compared to the classical
solution. This metric is defined as

6:Zq_Zc
e

19)

where z. and z, are displacements from |x.) and |x,),
respectively.
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Figure 2: Truss structure

4 RESULTS

Truss Structure

The truss structure is illustrated in Figure 2, where the
x- and y-axes indicate spatial coordinates in inches. The
truss consists of 19 nodes and 35 members. Each ele-
ment has a cross-sectional area of 8.5 in®> and elastic
modulus of 29,000 ksi. For the boundary conditions,
two pin supports are located at nodes 1 and 10. Two
roller supports are located at nodes 4 and 7. A down-
ward point load of 5,500 kips is applied at node 15.

Table 1: Condition number of MA for the truss structure
with different circuit depths and ansatz-random seeds.

Repetitions (/) | Best Seed | Condition Number
1 4 21.0823
2 1 11.6798
3 2 7.8683
4 4 3.9361
5 2 1.5099
6 1 1.0936
7 1 1.0052
8 4 1.0050
9 3 1.0045
10 0 1.0049

The VQED method was used to reduce the condition
number of MA. The results are shown in Table 1, where
the best choice is [ = 7, where the condition number
of MA has been significantly reduced to 1.0052 without
further increasing the circuit depth. This is significantly
smaller than 71.49, which is the original condition num-
ber of A.

The convergence plot of 32 eigenvalues for the truss
structure with ansatz depth of seven and random seed
of one is plotted in Figure 3. For all eigenvalues, con-
vergence was clearly observed after 200 iterations. Us-
ing the minimum eigenvalues and corresponding eigen-
vectors, the fidelity and L2 error for the solution gener-
ated from QSVT were 1.0000 and 0.0033, respectively.
Overall, the VQED method can effectively generate the
very accurate solution to the linear system.

The surface plots for x- and y-displacements in the truss
structure are visualized in Figure 4. The surfaces from
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Figure 3: Convergence plot of 32 eigenvalues for the
truss structure.

the proposed algorithm and classical linear solver are
nearly identical. Nodes with displacements close to
zero are omitted. Overall, most of the truss structure
displacements from QSVT are close to the displace-
ments from the classical linear solver.

MBB Beam

The MBB beam is shown in Figure 5. The beam is di-
vided into a 4 x 3 rectangular grid of elements. The side
length of each square element is 2 in. The left edge of
the beam is supported by four roller supports, whereas
the bottom edge is supported by two pin supports. A
downwards point load of 3,500 kips is applied at node
17.

Table 2: Condition number of MA for the MBB beam
with different circuit depths and ansatz-random seeds.

Repetitions (/) | Best Seed | Condition Number
1 0 21.3801
2 3 15.8670
3 0 9.3430
4 1 42713
5 0 1.9161
6 1 1.0278
7 0 1.0235
8 3 1.0174
9 4 1.0138

10 4 1.0129

Similarly, the sensitivity of VQED with respect to the
circuit depth was performed. The calculated condition
numbers of MA are shown in Table 2, where the best
choice is [ = 6 with the condition number of 1.0278.
This is significantly smaller than the original condition
number of A, which is 101.85.

Figure 6 shows the convergence behavior of 32 eigen-
values. It is observed that 31 out of 32 eigenvalues are
able to converge within 200 iterations. With the calcu-
lated eigenvalues and corresponding eigenvectors, the
fidelity and L2 error of the solution from QSVT are
0.9994 and 0.0254, respectively.
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Figure 4: Surface plots of (a) x-displacements and (b) y-displacements, and relative errors for (c) x-displacements
and (d) y-displacements for the truss structure. Nodes with displacements close to zero are omitted for visual

clarity.

Figure 5: MBB beam

In the displacement surfaces shown in Figure 7, the es-
timated displacements calculated with the quantum al-
gorithm deviate from theoretical values by relative er-
rors ranging from 0% to 29%. It is observed that the
free nodes have larger relative errors for both x- and
y-displacements than the constrained nodes. In addi-
tion, the boundary condition and the external load cause
the beam to move more freely in the vertical direction.
As a result, the relative error tends to be larger for
x-displacements than y-displacements. Although the
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Figure 6: Convergence plot of 32 eigenvalues for the
MBB beam.

largest relative error is 29%, the displacement surfaces
for both classical and QSVT methods are very similar.

S CONCLUDING REMARKS

In this paper, a VQED preconditioning method is pro-
posed as a quantum preconditioning method. A spec-
tral preconditioner M, is constructed from variationally
computed eigenvalues and eigenvectors of a Hermitian
matrix A. This spectral preconditioner can reduce the
condition number of A, which, in turn, improves accu-
racy of solving linear systems. The VQED method can
be used for Hermitian matrices of low-rank.

The VQED method was used to reduce the condition
numbers of the stiffness matrices for a truss structure
and a MBB beam. It was demonstrated that the VQED
can reduce the both condition numbers below 1.03,
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Figure 7: Surface plots of (a) x-displacements and (b) y-displacements, and relative errors for (c) x-displacements

and (d) y-displacements for the MBB beam.

which are significant improvements over the original
condition numbers. When QSVT is used for the precon-
ditioned linear systems, the estimated displacements
achieve very good accuracy and are very close to the
results from the classical linear solver.

In the proposed method, classical projection-based de-
flation is used to generate the orthogonal eigenvec-
tors. Future work will focus on imposing the orthog-
onality condition with a quantum computational frame-
work. The orthogonality condition can be implemented
in quantum computers either by introducing overlap
penalty terms in the cost function, implementing a pro-
jector with controlled-state preparation, or defining a
generalized eigenvalue problem with diagonalization.

The new preconditioning method was tested with
classically reconstructed eigenvalues and eigenvectors
computed with the VQED method. Future work will
also focus on implementing a single quantum com-
putational framework that integrates both VQED and
QSVT. The degree d of an odd polynomial for matrix
inversion is dependent on the condition number k such
that d = O[klog(k/¢€)]. To reduce the computational
expenses of solving linear systems, the preconditioner
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must be optimized with VQED before block-encoding
it into unitary operators in QSVT.
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