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ABSTRACT
Quantum-inspired machine learning is a new branch of machine learning based on the application of the mathe-
matical formalism of quantum mechanics to devise novel algorithms for classical computers. We implement some
quantum-inspired classification algorithms, based on quantum state discrimination, within a local approach in the
feature space by taking into account elements close to the element to be classified. This local approach improves
the accuracy in classification and motivates the integration with the classifiers. The quantum-inspired classifiers
require the encoding of the feature vectors into density operators and methods for estimating the distinguishability
of quantum states like the Helstrom state discrimination and the Pretty-Good measurement. We present a compar-
ison of the performances of the local quantum-inspired classifiers against well-known classical algorithms in order
to show that the local approach can be a valuable tool for increasing the performances of this kind of classifiers.
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1 INTRODUCTION

Quantum-inspired machine learning represents a
novel area within machine learning that leverages the
mathematical framework of quantum mechanics to
develop new algorithms for classical computers. In
this work, we implement several quantum-inspired
classification algorithms rooted in quantum state
discrimination, employing a local strategy within the
feature space. Specifically, we implement quantum-
inspired algorithms based on Helstrom discrimination.
The method involves classifying an unlabeled data
instance by identifying its k nearest training elements
before applying the algorithm to these k neighbors.
This local approach enhances classification accuracy.

Quantum-inspired classifiers necessitate the encoding
of feature vectors into density operators and methods
for assessing the distinguishability of quantum states,
such as Helstrom state discrimination and Pretty-Good
Measurement (PGM). In the experimental section, we
present a performance comparison between our local
quantum-inspired classifiers and established classical
algorithms. The aim is to demonstrate the potential of
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the local approach as a valuable technique for improv-
ing the performance of these types of classifiers.

2 QUANTUM-INSPIRED CLASSIFI-
CATION

The initial stage in quantum-inspired classification
involves quantum encoding, which encompasses
any method for mapping classical information into
quantum states. Specifically, we consider encoding
data vectors into density matrices within a Hilbert
space H whose dimensionality is determined by the
input space’s dimension. Density matrices are positive
semidefinite operators ρ with a trace of 1 and they
serve as the mathematical tools for describing the
physical states of quantum systems.

Pure states are a subset of density matrices. These are
rank-1 projectors that can be directly associated with
unit vectors up to a phase factor. A density operator ρ

on a d-dimensional Hilbert space Cd can be expressed
as:

ρ =
1
d

(
Id +

√
d(d−1)

2

d2−1

∑
j=1

b(ρ)j σ j

)
, (1)

where {σ j} j=1,...,d2−1 are the standard generators of the
special unitary group SU(d), also known as general-
ized Pauli matrices, and Id is the d × d identity ma-
trix. The vector b(ρ) = (b(ρ)1 , . . . ,b(ρ)d2−1), with b(ρ)j =√

d
2(d−1) tr(ρ σ j) ∈ R, is the Bloch vector associated

to ρ which lies within the hypersphere of radius 1 in
Rd2−1. For d = 2, the qubit case, the density matrices
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are in bijective correspondence to the points of the unit
ball in R3, the so-called Bloch sphere, where the pure
states are in one-to-one correspondence with the points
of the spherical surface.

Complex vectors of dimension n can be encoded into
density matrices of a (n+1)-dimensional Hilbert space
H in the following way:

Cn 3 x 7→ |x〉= 1√
‖ x ‖2 +1

(
n−1

∑
α=0

xα |α〉+ |n〉
)
∈ H,

(2)
where {|α〉}α=0,...,n is the computational basis of H,
identified as the standard basis of Cn+1. The map de-
fined in (2), called amplitude encoding, encodes x into
the pure state ρx = |x〉〈x| where the additional compo-
nent of |x〉 stores the norm of x. Nevertheless the quan-
tum encoding x 7→ ρx can be realized in terms of the
Bloch vectors x 7→ b(ρx) saving space resources. The
improvement of memory occupation within the Bloch
representation is evident when we take multiple tensor
products ρ⊗·· ·⊗ρ of a density matrix ρ constructing
a feature map to enlarge the dimension of the represen-
tation space [1].

Quantum-inspired classification methods rely on three
main steps: encoding data vectors into quantum den-
sity matrices, calculating centroids within this quan-
tum representation, and applying various quantum state
distinguishability criteria such as Helstrom discrimina-
tion, the Pretty-Good measurement [2], and the geomet-
ric minimum-error measurement [3] to differentiate be-
tween classes.

Let us briefly recall the notion of quantum state
discrimination. Given a set of arbitrary quan-
tum states with respective a priori probabilities
R = {(ρ1, p1), ...,(ρN , pN)}, in general there is no
a measurement process that discriminates the states
without errors, i.e. a collection E = {Ei}i=1,...,N of
positive semidefinite operators such that ∑

N
i=1 Ei = I,

satisfying the following property: tr(Eiρ j) = 0 when
i 6= j for all i, j = 1, ...,N. The probability of a success-
ful state discrimination of the states in R performing
the measurement E is:

PE(R) =
N

∑
i=1

pitr(Eiρi). (3)

A complete characterization of the optimal measure-
ment Eopt that maximizes the probability (3) for R =
{(ρ1, p1),(ρ2, p2)} is due to Helstrom [4]. Let Λ :=
p1ρ1− p2ρ2 be the Helstrom observable whose positive
and negative eigenvalues are, respectively, collected in
the sets D+ and D−. Consider the two orthogonal pro-
jectors:

P± := ∑
λ∈D±

Pλ , (4)

where Pλ projects onto the eigenspace of λ . The mea-
surement Eopt : = {P+,P−} maximizes the probability
(3) that attains the Helstrom bound:

hb(ρ1,ρ2) = p1tr(P+ρ1)+ p2tr(P−ρ2). (5)

Helstrom quantum state discrimination can be used to
implement a quantum-inspired binary classifier with
promising performances. Let {(x1,y1), ...,(xM,yM)} be
a training set with xi ∈ Cn, yi ∈ {1,2} ∀i = 1, ...,M.
Assume to encode the data points into quantum states
by means of Cn 3 x 7→ ρx ∈ S(H), one can construct
the quantum centroids ρ1 and ρ2 of the two classes
C1,2 = {xi : yi = 1,2}:

ρ1,2 =
1
|C1,2| ∑

x∈C1,2

ρx (6)

Let {P+,P−} be the Helstrom measurement defined by
the set R = {(ρ1, p1),(ρ2, p2)}, where the probabilities
attached to the centroids are p1,2 =

|C1,2|
|C1|+|C2|

. The Hel-
strom classifier applies the optimal measurement for the
discrimination of the two quantum centroids to assign
the label y to a new data instance x, encoded into the
state ρx, as follows:

y(x) =
{

1 if tr(P+ρx)≥ tr(P−ρx)
2 otherwise (7)

A strategy to increase the accuracy in classification
is given by the construction of the tensor product of
q copies of the quantum centroids ρ

⊗q
1,2 enlarging the

Hilbert space where data are encoded. The correspond-
ing Helstrom measurement is {P⊗q

+ ,P⊗q
− }, and the Hel-

strom bound satisfies:

hb(ρ
⊗q
1 ,ρ⊗q

2 )≤ hb

(
ρ
⊗(q+1)
1 ,ρ

⊗(q+1)
2

)
∀q ∈ N.

(8)
A larger Hilbert space in quantum encoding yields a
better Helstrom bound and consequently a more ac-
curate classifier, though it typically increases compu-
tational cost. Notably, when dealing with real input
vectors, encoding them into Bloch vectors provides a
method to effectively increase the Hilbert space dimen-
sion while potentially reducing time and space com-
plexity.

Clearly, defining a quantum encoding is equivalent to
select a feature map to represent feature vectors into
a space of higher dimension. In the case of the con-
sidered quantum amplitude encoding R2 3 (x1,x2) 7→
ρ(x1,x2) ∈ S(C3), the nonlinear explicit injective func-
tion ϕ : R2→R5 to encode data into Bloch vectors can
be defined as follows:

ϕ(x1,x2) :=
1

x2
1 + x2

2 +1

(
2x1x2,2x1,2x2,x2

1−x2
2,

x2
1 + x2

2−2√
3

)
.

(9)
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From a geometric point of view, the mapped feature
vectors are points on the surface of a hyper-hemisphere.
Class centroids, obtained by averaging feature vectors,
lie within the hypersphere and, while not directly corre-
sponding to density operators, can be rescaled to Bloch
vectors. To boost classification accuracy, the dimension
of the representation space can be increased by using q
copies of quantum states in a tensor product, encoding
data and centroids as ρ⊗q. Bloch encoding provides
an efficient way to handle feature maps by offering an
injective data encoding function that discards null and
repeated elements from the Bloch vector. This dras-
tically reduces storage requirements. Therefore, the
Bloch representation allows for compact storage of the
redundant information within ρ⊗q.

Let us consider a training set divided into the classes
C1, ...,CM , assume we have any training point x en-
coded into the Bloch vector b(x) of a pure state on Cd .
The calculation of the centroid of the class Ci, within
this quantum encoding, must take into account that the
mean of the Bloch vectors b(i) := 1

|Ci| ∑x∈Ci b(x) does
not represent a density operator in general. In fact, for
d > 2 the points contained in the unit hypersphere of
Rd2−1 are not in bijective correspondence with density
matrices on Cd . However, since any vector within the
closed ball of radius 2

d gives rise to a density operator, a
centroid can be defined in terms of a meaningful Bloch
vector by a rescaling:

b̂
(i)

:=
2

d|Ci| ∑
x∈Ci

b(x). (10)

A method of quantum state discrimination for distin-
guishing more than two states {(ρ1, p1), ...,(ρN , pN)}
is the square-root measurement, also known as Pretty-
Good measurement, defined by:

Ei = piρ
− 1

2 ρiρ
− 1

2 , (11)

where ρ = ∑i piρi, PGM is the optimal minimum-error
when states satisfy certain symmetry properties [2].
Clearly to distinguish between n centroids we need a
measurement with at most n outcomes. It is sometimes
optimal to avoid measurement and simply guess that the
state is the a priori most likely state.

The optimal POVM {Ei}i for minimum-error state dis-
crimination over

R = {(ρ1, p1), ...,(ρN , pN)}

satisfies the following necessary and sufficient Hel-
strom conditions [3]:

Γ− piρi ≥ 0 ∀i = 1, . . . ,N, (12)

where the Hermitian operator, also known as Lagrange
operator, is defined by Γ := ∑i piρi Ei. It is also use-

ful to consider the following properties which can be
obtained from the above conditions:

E j(p jρ j− piρi)Ei = 0 ∀i, j. (13)

For each i the operator Γ− piρi can have two, one, or no
zero eigenvalues, corresponding to the zero operator, a
rank-one operator, and a positive-definite operator, re-
spectively. In the first case, we use the measurement
{Ei = I,Ei6= j = 0} for some i where pi ≥ p j ∀ j, i.e. the
state belongs to the a priori most likely class. In the sec-
ond case, if Ei 6= 0, it is a weighted projector onto the
corresponding eigenstate. In the latter case, it follows
that Ei = 0 for every optimal measurement.

Given the following Bloch representations:

Γ =
1
d

(
aId +

√
d(d−1)

2

d2−1

∑
j=1

b jσ j

)
(14)

ρi =
1
d

(
Id +

√
d(d−1)

2

d2−1

∑
j=1

b(i)j σ j

)
, (15)

in order to determine the Lagrange operator in Cd we
need d2 independent linear constraints:

2pi

(
a− b̂

(i)
·b− pi

2
(1−|b̂

(i)
|2)
)
= a2−|b|2. (16)

A measurement with more than d2 outcomes can al-
ways be decomposed as a probabilistic mixture of mea-
surements with at most d2 outcomes. Therefore, if the
number of classes is greater than or equal to d2 and
we get d2 linearly independent equations, we construct
the Lagrange operator and derive the optimal measure-
ments. From the geometric point of view, we obtain
the unit vectors corresponding to the rank-1 projec-

tors Ei =
1
d

(
Id +

√
d(d−1)

2 ∑
d2−1
j=1 n(i)j σ j

)
where n(i) =

b̂
(i)
−ab

|b̂
(i)
−ab|

∈ Rd2−1 giving the POVM of the measure-

ment. It is also possible to further partition the classes
in order to increase the number of centroids and of the
corresponding equations. The classification is carried
out in this way: an unlabeled point x̂ is associated with
the first label y such that b(x̂) ·n(y) = maxi b(x̂) ·n(i).

3 LOCAL QUANTUM-INSPIRED
CLASSIFIERS

Our implementation of the quantum state discrimina-
tion classifiers begins by employing a k-nearest neigh-
bors (kNN) approach to select the k closest training
samples to the unclassified data point. The kNN algo-
rithm itself is a simple classifier that operates through
these steps:

1. calculating the distance between the test sample and
all training samples using a chosen metric;
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2. identifying the k training samples with the smallest
distances;

3. assigning the class label based on the majority class
among these k neighbors.

We proceed by first using kNN to extract the closest
elements to a test instance, followed by a quantum-
inspired classification instead of majority voting. We
investigate two scenarios: either applying kNN in the
original input space (e.g., via Euclidean distance) and
then encoding the k neighbors for quantum classifica-
tion, or encoding the entire dataset into density matri-
ces and then using kNN with a quantum operator dis-
tance to find the k neighbors. In this latter case, the dis-
tance metric we employ is the Bures distance, a quan-
tum generalization of the Fisher information and a dis-
tance linked to super-fidelity. The Bures distance is de-
fined by:

dB(ρ1,ρ2) =

√
2
(

1−
√

F (ρ1,ρ2)
)
, (17)

where the fidelity between density operators is given
by F (ρ1,ρ2) =

(
tr
√√

ρ1ρ2
√

ρ1
)2. Let us note that

the fidelity reduces to F (ρ1,ρ2) = 〈ψ1|ρ2|ψ1〉 when
ρ1 = |ψ1〉〈ψ1|. Therefore the Bures distance between
the pure state ρ1 and the arbitrary state ρ2 can be ex-
pressed in term of the Bloch representation as follows:

dB(ρ1,ρ2) =

√√√√2

(
1−
√

1
d

(
1+(d−1)b(1) ·b(2)

))
(18)

where b(1) and b(2) are the Bloch vectors of ρ1 and ρ2
respectively and d is the dimension of the Hilbert space
of the quantum encoding. The special form of the Bures
distance, expressed in terms of Bloch vectors as in (18),
is relevant for our purpose because data vectors are en-
coded into pure states and the quantum centroids are
calculated as Bloch vectors of mixed states in general.

An alternative distance can be defined via super-fidelity

dG(ρ1,ρ2) =
√

1−G (ρ1,ρ2), (19)

where the super-fidelity between density operators is
given by

G (ρ1,ρ2) = trρ1ρ2 +
√
(1− trρ2

1 )(1− trρ2
2 ).

Notice that the super-fidelity reduces to
G (ρ1,ρ2) = 〈ψ1|ρ2|ψ1〉 when ρ1 = |ψ1〉〈ψ1|. The
inner distance between the corresponding Bloch
vectors represents the angle θ between the unit

vectors (b(1),

√
1−|b(1)|2) and (b(2),

√
1−|b(2)|2),

which is normalized to be 1: D̂G

(
b(1),b(2)

)
=

arccos
(

b(1)·b(2)
+

√
(1−|b(1)|2)(1−|b(2)|2)

)
π

. For pure states
the inner distance corresponds to the Fubini-Study
distance.

In Algorithm 1, the locality is imposed by running the
kNN on the input space finding the training vectors that
are closest to the test element, then there is the quan-
tum encoding into pure states and a quantum-inspired
classifier (Helstrom, PGM, geometric Helstrom) is lo-
cally executed over the restricted training set. In Algo-
rithm 2, the test element and all the training elements
are encoded into Bloch vectors of pure states then a
kNN is run w.r.t. the Bures distance to find the nearest
neighbors in the space of the quantum representation,
then a quantum-inspired classifier is executed with the
training instances corresponding to the closest quantum
states.

Algorithm 1 Local quantum-inspired classification
based on kNN in the input space before the quantum
encoding. The distance can be: Euclidean, Manhattan,
Chessboard, Canberra, Bray-Curtis.
Require: Dataset X of labeled instances, unlabeled point x̂
Ensure: Label of x̂

find the k nearest neighbors x1, ...,xk to x̂ in X w.r.t. the
Euclidean distance
encode x̂ into a pure state ρx̂
for j = 1, ...,k do

encode x j into a pure state ρx j

end for
run the quantum-inspired classifier with training points en-
coded into {ρx j} j=1,...,k.

Algorithm 2 Local quantum-inspired classification
based on kNN in the Bloch representation after the
quantum encoding. The distance can be: Bures, Super-
Fidelity, Inner.
Require: Dataset X of labeled instances, unlabeled point x̂
Ensure: Label of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ X do

encode x into a Bloch vector b(x) of a pure state
end for
find the k nearest neighbors to b(x̂) in {b(x)}x∈X w.r.t. the
distance DB
run the quantum-inspired classifier over the k nearest
neighbors.

A local quantum-inspired classifier can be defined
without quantum state discrimination but considering
a nearest mean classification like the following: after
the quantum encoding we perform a kNN selection
and calculate the centroid of each class considering
only the nearest neighbors to the test element, finally
we assign the label according to the nearest centroid as
schematized in Algorithm 3.
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Algorithm 3 Local quantum-inspired nearest mean
classifier.
Require: Training set X divided into n classes Ci, unlabeled

point x̂
Ensure: Label of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ X do

encode x into a Bloch vector b(x) of a pure state
end for
find the neighborhood K = {b(x1), ...,b(xk)} of b(x̂) w.r.t.
the distance DB
for i = 1, ...,n do

construct the centroid b̂
(i)

= 2
d|Ck

i |
∑x∈Ck

i
b(x) where

Ck
i := {x ∈Ci : b(x) ∈ K}

end for
find the closest centroid b̂

(l)
to 2

d b(x̂) w.r.t. the distance
DB
return label of the class Cl

4 RESULTS AND DISCUSSION
In this section, we describe some results obtained by
the implementation of the local quantum-inspired clas-
sifiers with several distances compared to well-known
classical algorithms. In particular, we consider the
SVM with different kernels: linear, radial basis func-
tion, and sigmoid. Then, we run a random forest,
a naive Bayes classifier, and the logistic regression.
In order to compare the results with previous papers,
we take into account the following benchmark datasets
from PMLB public repository [5]. For each dataset
we randomly select 80% of the data to create a train-
ing set and use the residual 20% for the evaluation.
We repeated the same procedure 10 times and calcu-
lated the average accuracy using the code available at
github.com/leporini/classification. Certainly, it is pos-
sible to compare the performances based on different
statistic indices including Matthews correlation coeffi-
cient, F-measure, Cohen’s parameter.

We observe that the performances of the local
quantum-inspired classifiers turn out to be definitely
more accurate, where the hyperparameter k is set
equal to the number of classes in the dataset. This
value is reasonable to construct the centroids of the
classes. In particular, Algorithm 1 with the Euclidean
distance is the most accurate classifier for the datasets
analcatdata_boxing1, analcatdata_happiness, biomed,
prnn_fglass, wine_recognition, while with Man-
hattan distance is best for analcatdata_aids, analcat-
data_japansolvent, breast_cancer, iris, tae, with Chess-
board distance is best for analcatdata_cyyoung9302,
analcatdata_lawsuit, and with Bray-Curtis distance
is best for analcatdata_bankruptcy, appendicitis.
Algorithm 2 with the Bures distance outperforms
Algorithm 1 and 3 for analcatdata_dmft and pro-
duces the same accuracy for labor. Algorithm 3

with the Bures distance is the most accurate classifier
for analcatdata_asbestos, new_thyroid, phoneme,
prnn_synth.

5 CONCLUSIONS
This paper centers on the practical implementation of
classification algorithms that rely on quantum state dis-
crimination. A key innovation is the introduction of
a local approach for executing the classifier. Specif-
ically, after partitioning the training set, the k nearest
data points to the test element are encoded into Bloch
vectors and subsequently used to determine the quan-
tum centroid for each class.

The proposed methodology introduces a family of clas-
sifiers due to the flexibility in choosing both the strat-
egy for defining locality within the training set and the
quantum state discrimination procedure. Both the local
classification approach and the quantum-inspired data
encoding and processing warrant further exploration to
fully understand their impact on machine learning.

In a forthcoming article, we will provide a formal com-
plexity analysis of the algorithms with respect to dataset
size, number of features, and Hilbert space dimen-
sionality. We will also compare performance against
more advanced classical methods, such as deep neural
networks, to better position the benefits of quantum-
inspired approaches. Furthermore, we will present a
thorough error analysis and sensitivity study. This will
specifically focus on how the hyperparameter k in our
local strategy influences the results.
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