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ABSTRACT 
The article presents a new approach to the 

decomposition of unitary operations by controlled 

rotations. A new method of quantum signal-induced 

heap transform based QR decomposition is described. 

This transform is an analogue of the discrete transform 

which is generated by a given signal and uses different 

paths of processing the data. It is shown that among 

such paths we can find paths that allow constructing 

efficient quantum circuits for implementing multi-

qubit unitary gates. The case of real unitary matrices 

is considered. The proposed approach is described in 

detail in examples and quantum circuits are presented 

for 2-qubit operations. The general case of 𝑟-qubit 

unitary operations, when 𝑟 ≥ 2, is considered 

similarly.  

Keywords 
Quantum QR decomposition, quantum heap 

transform, quantum cosine transform. 

1. INTRODUCTION 
Many methods of QR-decomposition of real matrices 

are known. We mention the Givens rotations - 

[DLHL12], Gramm-Schmidt process and the method 

of Householder transformations [Hou58]. We stand on 

the method of QR decomposition. The main goal is to 

efficiently decompose a given operation into a set of 

simple gates, for example the controlled rotation gates, 

phase shift gates, and CNOTs.  

In this work, a general method of QR decomposition 

is described, by using the quantum signal-induced 

heap transform [AM06],[AG14]. We provide a new 

view of the QR-decomposition of unitary matrices. 

The resulting codes allow us to simplify the quantum 

circuits for the quantum operations, including Hartley 

and cosine transforms. 

2. THE CONCEPT OF DsiHT 
The 𝑁-point DsiHT is the transform that is generated 

by a given signal 𝒙 of length 𝑁 [AM06]. The main 

characteristic of the DsiHT is the path, that is, the 

order in which it is assembled from the basic 2-point 

rotations of the generator elements. As example, Fig. 

1 shows two diagrams of composing the 4-point 

DsiHT. Each unitary transform 𝑇𝑘 , 𝑘 = 1,2,3, is the 

Givens rotation, which is generally described as    

𝑇 [
𝑥
𝑦] = [

cos 𝜗 −sin 𝜗
sin 𝜗 cos 𝜗

] [
𝑥
𝑦] = [

±√𝑥2 + 𝑦2

0
].  (1) 

Here, the angle is defined by the inputs as 

𝜗 = −arctan(𝑦/𝑥), and 𝜗 = ±𝜋/2 if 𝑥 = 0. The 

path of the transform, which is shown in part (a), is the 

traditional path and this transform is called the DsiHT 

with the weak carriage-wheel (see [AG14] for detail). 

Two rotations are on the adjacent BPs, that is, 0 and 1, 

0 and 2. The last rotation operates on BPs 0 and 3 

which are not adjacent. The transform of the generator 

is equal to 𝑇𝑥 = (±√𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2, 0,0,0,0). 

  
Fig. 1. Two diagrams for the 4-point DsiHTs. 

 

The second path in part (b) also shows that one of 

rotations operates on the non-adjacent BPs. These BPs 

are 1 (01) and 2 (10). Figure 2 in part (a) shows path 

#3 for the 4-point DsiHT. All three rotations in this 

transform operate on the adjacent BPs. These BPs are 

0 and 2, 1 and 3, and then 0 and 1. This path is 

considered good for building the circuit of the 

corresponding 2-qubit QsiHT, as shown in part (b).  
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Fig. 2 The diagram and circuit for the 2-qubit QsiHT. 

The above three 4-point DsiHTs, 𝐻4, use different set 

of angles 𝐴𝑥 = {𝜗1, 𝜗2, 𝜗3} which are calculated from 

the same generator 𝒙 = (𝑥0, 𝑥1, 𝑥2, 𝑥3). The results of 

the calculations are the same (up to the sign), 𝐻4(𝒙) =

(𝑥0
(𝑘)
, 0,0,0) = (±√𝑥0

2 + 𝑥1
2 + 𝑥2

2 + 𝑥3
2, 0,0,0), 𝑘 =

3,1,2. The generated transform operates on an input 

𝒛 = (𝑧0, 𝑧1, 𝑧2, 𝑧3) using the same path, as shown in 

part (c), 𝐻4(𝒛) = (𝑧0
(2)
, 𝑧1
(1)
, 𝑧2
(1)
, 𝑧3
(1)
). Such effective 

paths exist for the 𝑁-point DsiHTs, when 𝑁 > 2, and 

larger this number 𝑁, the more such paths can be 

found. We call them fast paths.  

3. DsiHT-BASED DECOMPOSITION 
In this section, we describe the QR decomposition of 

a square matrix 𝐴 of size 2𝑟 × 2𝑟 , 𝑟 > 1, by the Givens 

rotations. The unitary matrix 𝐴 is considered with real 

coefficients. In the QR decomposition of the matrix 𝐴, 

(2𝑟 − 1) DsiHTs are used. This decomposition is 

illustrated below for a 4 × 4 unitary matrix, 

  

𝐴 = [

∘ ∘ ∘ ∘
∘ ∘ ∘ ∘
∘ ∘ ∘ ∘
∘ ∘ ∘ ∘

]
∘: 𝐷𝑠𝑖𝐻𝑇
→     𝐴1 = [

⋆ 0 0 0
0 ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆

]
⋆: 𝐷𝑠𝑖𝐻𝑇
→      

 

→ 𝐴2 = [

⋆ 0 0 0
0 ⋄ 0 0
0 0 ⋄ ⋄
0 0 ⋄ ⋄

]
⋄: 𝐷𝑠𝑖𝐻𝑇
→     𝑅 = [

⋆ 0 0 0
0 ⋄ 0 0
0 0 ∗ 0
0 0 0 ⋇

].  

 

The first DsiHT, 𝐻0−3, is generated by the first column 

of the matrix 𝐴 and then transforms each of its 

columns. Six zero coefficients will be obtained in the 

new matrix 𝐴1, as shown above. The second 3-point 

DsiHT, 𝐻1−3, is generated by the three components of 

the second column of the matrix 𝐴1. This transform is 

applied to the 3×3 sub-matrix and another four zero 

coefficients will be obtained in the new matrix 𝐴2. The 

last 2-points DsiHT, 𝐻2−3, is generated by the last two 

coefficients of the third column of 𝐴2 and is applied to 

its 2× 2 sub-matrix. The matrix diagonalization is 

complete. The matrix 𝑅 is diagonal with the 

coefficients ±1.  

4. TWO-QUBIT OPERATIONS 
Triangularization of the square matrix 4×4 in the QR 

decomposition by three DsiHTs can be written as  

𝑇: 𝐴 → 𝑅 = 𝐻2−3𝐻1−3𝐻0−3𝐴.                   (3) 

Here, the matrix 𝑅 is a diagonal matrix with the 

coefficients ±1 on the diagonal. The diagram of 

realization of the matrix 𝐴 is given in Fig. 3.  

 
Fig. 3 Block-diagram for a 3-qubit unitary operation.  

The operation 𝐴 can be calculated by the inverse 

transform as 𝐴 = 𝑇−1(𝑅) = 𝐻0−3
′ 𝐻1−3

′ 𝐻2−3
′ 𝑅.   

The case 𝑵 = 𝟒 (Transform 𝐻0−3) The block-diagram 

and the quantum circuit for the 2-qubit QsiHT are 

given in Fig. 4.  

 
Fig. 4 The block-diagram and circuit of the 2-qubit 

QsiHT, 𝐻0−3, on bit-planes 0-3. 

  

The case 𝑵 = 𝟑 (Transform 𝐻1−3) The input is the 2-

qubit superposition in the form of 𝒙1 = (𝑎, 𝑥1, 𝑥2, 𝑥3) 
and only the last three amplitudes are transformed (see 

Fig. 5). The rotation on bit-planes 2 (10) and 3 (11) is 

defined as 𝑅𝜗1: (𝑥2, 𝑥3) → (0, ±√𝑥2
2 + 𝑥3

2), with 𝜗1 =

atan(𝑥2/𝑥3).  

In the matrix form, the first circuit is described as 

𝐻1−3 = [

1     
 cos 𝜗2  − sin 𝜗2
  1  
 sin 𝜗2  cos 𝜗2

] (𝐼2⊕𝑅𝜗1). 
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Fig. 5 The block-diagram and the circuit for the 2-

qubit QsiHT, 𝐻1−3, on bit-planes 1-3. 

The case 𝑵 = 𝟐 (Transform 𝐻2−3) The input is the 3-

qubit superposition in the form of 𝒙1 = (𝑎, 𝑏, 𝑥2, 𝑥3) 
and the transform process only the last two 

amplitudes. The block-diagram of this 2-qubit QsiHT 

and the corresponding gate are shown in Fig. 7. 

 
Fig. 6 The block-diagram and the circuit element for 

the 2-qubit QsiHT, 𝐻2−3, on bit-planes 2 and 3. 

 

All these three QsiHTs can be used in the QR 

decomposition of the 4× 4-matrix, 𝑇(𝐴) = 𝑅. The 

matrix 𝑅 is diagonal and the number of controlled 

rotation gates is equal to 𝜇(𝑟) = 3 + 2 + 1 = 6. The 

circuits for realization a 2-qubit unitary operation 𝐴 is 

given in Fig. 7. Here, 𝑅𝜗1
′ = 𝑅−𝜗𝑘, for 𝑘 = 1,2.  

  

 
Fig. 7 The quantum circuits for 2-qubit operator. 

 

This circuit is universal. Given a diagonal matrix 𝑅 

and any six angles in Table 1 can be used to generate 

a 2-qubit operation by the above circuit.  
 

 𝜗1 𝜗2 𝜗3 

𝐻0−3 ∗ ∗ ∗ 

𝐻1−3 ∗ ∗  

𝐻2−3 ∗   

Table 1. 2-qubit operation angles. 

 

If some angles are zero or 90, 180, and 270 degrees, 

the quantum circuit can be simplified by reducing the 

number of rotation gates. For comparison, the method 

described in [FD19] uses 42 = 16 gates.  

5. QUANTUM HARTLEY AND 

COSINE TRANSFORMS 

In this section, we apply the described method for 

computing the quantum Hartley transform (QHyT) 

and quantum cosine transform (QCT) of type II.  

Example 1 (The 2-qubit QCT-II) The 𝑁-point DCT-

II,  𝑋𝑝, of a signal 𝑥𝑛 , is calculated by [RB86]  

𝑋𝑝 = √
2

𝑁
 ∑ 𝑥𝑛 cos (

𝜋

𝑁
(𝑛 + 0.5)𝑝) ,

𝑁−1

𝑛=0

𝑝 = 0: (𝑁 − 1), 

and 𝑋0 = 𝑋0/√2. In the 𝑁 = 4 case, the matrix of the 

transform can be written as   

𝐴 =
1

2
[

1 1 1 1
1.3066 0.5412 −0.5412 −1.3066
1 −1 −1 1

0.5412 −1.3066 1.3066 −0.5412

] 

det 𝐴 = 1. For example, if the input vector is 𝑧 =

(1, −3,2,3)′/√23, then the DCT of this vector is equal 

to 𝑦 = 𝐴𝑧=(0.3128, -0.5546, 0.5213, 0.5682)′. The 

QR decomposition by the DsiHTs with the fast path is 

accomplished by the rotations with the angles given in 

Table 2. The matrix 𝑅 in this decompositon is 𝑅 =
diag{1,1,1,1} = 𝐼4, i.e., the identical matrix. 

 

 𝜗1 𝜗2 𝜗3 

𝐻0−3 −52.5708° −28.4221° −34.6476° 

𝐻1−3 249.7543° 256.5505°  

𝐻2−3 −35.2644°   

Table 2. Angles of rotations in the circuit of Fig. 7. 

 

The circuit for the 2-qubit QCT-II includes six 

controlled rotation gates and is shown in Fig. 8. 

 

 
Fig. 8 The quantum circuits for 2-qubit QCT-II. 

Example 2 (2-qubit quantum Hartley transform)  

The matrix of the 𝑁-point transform discrete Hartley 

transform (DHyT) is equal to  
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𝐴 =
1

√𝑁
[cos (

𝜋

𝑁
𝑛𝑝) + sin (

𝜋

𝑁
𝑛𝑝)]

𝑛,𝑝=0:(𝑁−1)
. 

The 4-point transform has the unitary matrix  

𝐴 =
1

2
[

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

] , det 𝐴 = −1.    (12) 

The QR decomposition of this matrix by the 

DsiHTs with fast path is accomplished by the rotations 

with angles given in Table 3. The diagonal matrix is 

equal to 𝑅 = diag{1,1,1, −1} = 𝐼2⊕𝑍. 

 

 𝜗1 𝜗2 𝜗3 

𝐻0−3 −45° −45° −45° 

𝐻1−3 270° (−90°) −90°  

𝐻2−3 225°    

Table 3. Angles of the rotation for 2-qubit QHyT. 

 

Because of angles of 45°, the circuits of the 2-qubit 

QHyT can be simplified as shown in Fig. 9. It includes 

four controlled rotation gates and one local rotation. 

 

 
Fig. 13 The quantum circuits of the 2-qubit QHyT. 

 

A. Results of Qiskit Simulation 
To validate the proposed quantum signal-induced 

heap transform (QsiHT)-based QR decomposition, the 

quantum algorithms were implemented and simulated 

using IBM’s Qiskit framework. In the following 

tables, the QCT-II and QHyT simulation results are 

recorded. For each simulation, the circuit was 

executed for different numbers of shots (1,000, 

10,000, and 100,000) to analyze the convergence of 

results compared to the theoretical expectation. The 

measurement results were analyzed using the Mean 

Relative Squared Error (MRSE) metric.  

 

 Ideal 1,000 

shots 

10,000 

shots 

100,000 

shots 

|00ۧ 0.3127

7 

0.5545 

0.2932 0.3122 0.3116 

|01ۧ 0.5545 0.5718 0.5494 0.5560 

|10ۧ 0.5212 0.5310 0.5189 0.5201 

|11ۧ 0.5682 0.5523 0.5757 0.5684 

MRSE 0.0000 8.0230e

-03 

2.3438 

e-03 

5.7055 

e-04 
Table 4: Qiskit results of the 2-qubit QCT-II shown 

in Example 1. 

 

 Ideal 1,000 

shots 

10,000 

shots 

100,000 

shots 

|00ۧ 0.3127

7 

0.3224

9.7298 

0.3153 0.3120 

|01ۧ 0.7298 0.7197 0.7328 0.7310 

|10ۧ 0.3127

7 

0.3127

7 

0.3173 0.3116 

|11ۧ 0.5212 0.5282 0.5126 0.5211 

MRSE 0.0000 3.9322e

-03 

2.6370e

-03 

5.3517 

e-04 
Table 5: Qiskit results 2-qubit of the quantum 

Hartley transform shown in Example 2 with 𝑧 =

(1, −3,2,3)′/√23 as input. 

6. CONCLUSION  
In this work, we describe the method of QsiHT-based 

QR decomposition for unitary operations. The 

quantum circuits for implementing unitary operations 

on two-qubit superpositions are presented. The 

corresponding quantum circuit for unitary operations 

on 2 qubits are presented. Examples with the Hartley 

and cosine transformations are also considered. The 

presented method can also be used to construct 

quantum circuits for m-qubit operations, when 𝑚 ≥ 2, 

since the fast paths with splitting for 𝑚-qubit DsiHT 

can be also found [AG25]. For 3-qubit operations, our 

quantum circuit uses a maximum of 28 rotations. 
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