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ABSTRACT

In this paper, we present a novel representation of two-qubit systems using three Bloch spheres. We explicitly
construct a bijection between the Hilbert space of state vectors and a triple-sphere framework, where the first two
Bloch spheres encode the individual qubit states, and the third sphere captures the entanglement between them.
This geometric interpretation provides intuitive insights into the structure of composite quantum systems and lays
the groundwork for further generalization to n-qubit systems. This work is the first step in a broader line of research
aimed at developing a Bloch-sphere-based model to describe and analyze the behavior of multi-qubit systems, with
a special focus on the study of entanglement.
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1 INTRODUCTION also base-2 numbers so showing the same values 1 or
0 when measured and therefore collapsed to a classical
state. Nevertheless, qubits may also be in a sort of su-
perposition state which conforms to a two-dimensional
vector in the complex space C?, with orthonormal basis
vectors |0) and |1). This conforms a very appropriate
way to mathematically represent the state of a qubit at
any given time within a quantum system. Equation 1

shows the state of the qubit |y) represented as a linear
There exist several models of computation, among ombination of those basis vectors.

which the circuit model is the most widely used for
quantum computing [E.89, PJOS]. In order to formulate

The idea of a quantum computer was first proposed by
Prof. Richard Feynman [Fey82] in 1982, who pointed
out that accurately and efficiently simulating quantum
mechanical systems would be almost impossible on a
classical computer, but not on a new kind of machine,
a computer itself built of quantum mechanical elements
which obey quantum mechanical laws.

a Linear Algebra for this model, scalars, vectors and lw) =al0)+b|1) a,beC, |a|2+ |b|2 =1 (1)
matrices should be defined. For the first, C is the
answer. Let’s introduce the other two in detail. Where a is the complex scalar amplitude of measur-

ing the basis state |0), and b is the same for measuring
the value |1). Amplitudes may be thought of as quan-
tum probabilities that measure the chance with which a
given quantum state will be observed when the super-
position is made to collapse.

Classical information is based on the notion of bit, a
base-2 number that takes either the value 1 or the value
0, meanwhile quantum information is based on qubits,
which are represented in a similar way since they are

A widely used model in quantum information process-
Permission to make digital or hard copies of all or part of ing is the Bloch sphere representation, where a simple
this work for personal or classroom use is granted without qubit state ‘l[/> is represented by a point located in the
fee provided that copies are not made or distributed for profit surface of a standard unitary sphere, whose coordinates
or commercial advantage and that copies bear this notice are expectation values of physically interesting opera-
and the full citation on the first page. To copy otherwise, tors for the given quantum state. Operations on indi-
or republish, to post on servers or to redistribute to lists, vidual qubits commonly used in quantum information
requires prior specific permission and/or a fee. processing can also be represented in the Bloch sphere.

Within the Bloch sphere, the north and the south pole
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are defined as the states of the orthonormal base |0) and
|1), respectively. Any unit operation, which leads from
an initial state to the final state of the single qubit, is
equivalent to a composition of rotations on the axes of
the Bloch sphere.

Due to equivalent representations of states via the Bloch
sphere of figure 1, any state of a single qubit can be
written as:

[w) :cosg|0>+e“’ising|l> 0 €[0,7],9 €[0,27)
)

Figure 1: State of a qubit on the Bloch sphere

The Bloch sphere can be used to easily visualize the
effect of applying quantum gates, or, the temporal evo-
lution of the state of a two-level system described by
a Hamiltonian, as in studying the pulses used in nu-
clear magnetic resonance. In both cases, the effect of
applying a 2x2 unitary matrix (which can always be de-
composed as a product of rotation operators) must be
studied.

A rotation operator is defined by an axis and an angle
of rotation. The action of a rotation operator on the
quantum state translates, the point associated with the
state on the Bloch sphere, into the point reached once
rotated the given angle over the axis of rotation.

It is clear that some geometric pictures help us greatly
in understanding some quantum information or quan-
tum algorithms problems, such as the representation of
a unit vector of the Bloch sphere. This representation
is smart and powerful for a single qubit. Neverthe-
less, there is no commonly accepted representation for
a quantum system for two or more qubits so far, even
when we can find some papers reported in the literature
on the subject.
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Thus, in this paper we propose a model extension of the
Bloch Sphere for a system conformed by more than one
qubit, where for the case of 2 qubits, exactly 3 spheres
are needed, so showing the way in which the spheres are
interacting. Despite the length of some formulae in it,
the proposed model is quite simple and, with no doubt,
means a clear advantage for describing, analyzing and
processing tasks.

The paper is organized as follows. First, we introduce
some fundamental concepts regarding the Bloch sphere
representation for a single qubit. Next, we extend the
discussion to the two-qubit system and explain the key
ideas behind this representation. Following this, we
present and prove a theorem that establishes a bijection
between the vector representation and the three Bloch
spheres representation. Finally, we provide several ex-
amples to illustrate the potential of this alternative rep-
resentation.

2 BACKGROUND

We can find in the scientific literature not many papers
studying different models for representing general sets
of qubits, in particular, the basic case of two qubits.
Among them, we can cite [MDO1] as the preliminary
work, where a generalization of the standard Bloch
sphere representation for two qubits is presented in
the framework of Hopf fibrations of high-dimensional
spheres by lower-dimensional ones. There, they need
a 7-dimensional sphere for the model. In [HDO04] it
is shown that the states of a system of two qubits can
be represented in a 6-dimensional geometric algebra
quite similar to the Bloch Sphere. In [Whal6] it is re-
ported that any pure two-qubit state can be represented
by six real angles, with a natural parameterization in-
duced by the bipartite structure. Up to a certain point
this is a result close to ours, but there are some differ-
ences that we remark on in the following. And finally,
we can cite [Wie20], where a model of three Bloch
Spheres is presented as a model for a 2 qubits system,
by means of Hopf fibrations, as the first work cited, be-
sides the fact that one of the spheres is not unitary, thus
they need an additional dimension to represent the ra-
dius of the sphere, so getting in the end 7 dimensions.
Wang [Wan18] applied a geometric algebra to analyze
the space of a multi qubits system, particularly two and
three, so using a single angle to represent the entangle-
ment in terms of the Von Newman entropy. Finally, in
[DGB22] a model of a two qubit system is presented,
where two spheres and a 3 x 3 correlation matrix are
used.

After the study of the related work, we can see that there
are proposed models to represent 2 qubits by using 6 or
7 real dimensions.
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2.1 The model for a single qubit.

According to eqn. 1, two complex values are required,
i. e. four real values corresponding to the real part and
the imaginary one of each. Since the sum of the squares
of the modules of these complex numbers must be one,
one of their associated four real values could be com-
puted from the rest, so that, we will only need three real
dimensions to describe the state of a qubit.

However, the representation of eqn. 2 only uses two
real values to represent both angles, 6 and ¢. This is
due (see Chapter 1 of [NC11]) to the fact that from our
perspective, the state of a qubit does not change when it
is multiplied by a global phase 7 since the resulting one
is indistinguishable from the former. Therefore, eqn. 1
translated into polar coordinates remains this way

W) = r1e? |0) + rpeTH 9 1) 3

Where 71,7 € [0,1] Ar? 4+ 13 = 1, arg(a) = vy and
arg(b) = v+ o.

According to previous paragraph, if we multiply the
qubit |y) by a constant multiplier of the form e~", the
observed value does not change

) =€ " |y) = r1(0) +r2e?[1) )

Finally, if we rename r; = cos g, and rp = sing, we
obtain eqn. 2, so showing that two real dimensions is
enough to represent a single qubit.

2.2 The model for two separated qubits

Let’s proceed in similar terms. In this case, the base of
the Hilbert space to represent the state ¥ of a system of
two qubits is {|00),|01),[10),|11)}

W) =al00) +5(01) +c[10) +d|11)  (5)
Where a,b,c,d € C, |a|® + |b|> +|c|> +|d|* = 1.

We start from 8 real dimensions to represent the state
of a system of two qubits. As before, one of them is
depending on the others from the sum of the square of
the modulus being one, therefore we just need 7 dimen-
sions.

In addition, as the global phase factor is still held, the
first non-zero element of the vector can be assumed to
be a real number with no imaginary component (af-
ter multiplying the entire vector by the inverse of its
phase). Therefore, we will only need 6 real dimensions.

In the same way, given two qubits represented by their
Bloch spheres (see eq. 2) when we assume the sepa-
rable system formed by them both, it is clear that the
quantum state of the system can be obtained from the
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tensor product of the corresponding quantum states of
the components as it can be seen below

Q1) =

|02) = t

|01)®|02) = cosglcoseiz\_()OH—
cos 5 sin 3e'?2|01) +
sin % cos 291 |10) +
sin % sin & ef(01+92) |11)

coszz—] |0) + i sinf%—‘ 1)
cos % [0) + €% sin % [1)

(6)

In this case, we do not have any kind of entanglement,
so only 4 real dimensions are required to represent the
system.

Now we want to extend this result to the general case
which may include entanglement, in next section.

3 MODELLING THE 2 QUBITS SYS-
TEM

From the literature referred to in the previous section,
we can observe that the models for a 2 qubit system are
using either 6 or 7 real dimensions in order to describe
themselves. We have stated that 6 would be enough for
the reasons previously exposed. In this section we will
see that these 6 dimensions can be captured by means
of 3 Bloch spheres, each composed by two angles, re-
spectively (6y, @;) and (6>, @,) for encoding each of the
2 qubits, and the last one (63, ¢3) devoted to modelling
the entanglement between them. The idea we follow is
quite simple and visual.

In [NC11] (section 1.3.1) it is shown that an arbitrary
single qubit unitary gate can be decomposed in the fol-
lowing rotation gates along Z and Y axes.

ko= ) %] mo-[0

—sinB
cos O

(N
Furthermore, we start from eq. 6, which corresponds
to a quantum system of 2 separable qubits, i.e.
entanglement-free, for which just 2 Bloch spheres
would be enough for modeling.

In order to start considering entanglement between the
qubits, we split the options in this way:

Entanglement in the phase component Let’s analyze
the phases of the 4 components of the vector represent-
ing the quantum state.

e |00) component lacks of a phase because it is the
tensor product of the |0) components of each of the
qubits

* Amplitude of |01) has a phase, which is the transla-
tion of the phase of qubit Q>
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* Amplitude of |10) has a phase, which is the transla-
tion of the phase of qubit O

» Amplitude of |11) has a phase equal to the sum of
the two previous phases

It is immediate that when dealing with a separable state,
the phase of amplitude for |11) can be computed from
those of [01) and |10).

Nevertheless, considering an arbitrary vector (a,b,c,d)
belonging from C* with no phase in the first compo-
nent (a), the phase of the fourth component can be in-
dependent from the rest, therefore we need to introduce
the phase for the amplitude of vector |11), as an addi-
tional component namely, from now on, the entangle-
ment phase.

For dealing with this we adopt a notation inspired in
[BBC'95] for a controlled binary gate defined as fol-
lows.

Definition 1 Let |Q;...0,) be a system of n qubits,
let U be a binary gate acting over a single qubit, let
i € {2...n} be the index inside the register of the qubit
over which U acts, and let J C {1...i— 1} be a set of
qubits. We denote the controlled gate acting on qubit i
controlled by qubits from set J, as /\{ U.

O

In the particular case in which J = @, for a system of
n qubits, we have a not controlled gate, thus /\?U =
Flever .

According to this notation, the introduction of the
above-mentioned new phase will be denoted by a new
phase angle @3 only acting over the |11) amplitude, in
a way similar to the following quantum rotation gate,
now controlled on qubit 1.

Thus, A} R,(3) defined in this way

oS OO

0
0
X ®)
0

>

=

~N

a7

s

N—

I
OO O =
oSO = O

eilp3

which defines the behaviour of the phase component
of the third Bloch sphere defining the system of two
qubits.

Now, we will proceed to define the behaviour of the
remainder component of the third sphere, the angle 65,
on the real part of the amplitudes |10) and |11).

To do that, we can see from the modulus of the ampli-
tudes of those basis vectors, in a general quantum state
of two qubits, that its final amplitudes cannot depend
only on the amplitudes of the components if they are
not separable. Thus, we need a redistribution of the
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corresponding values. This can be made in a similar
way to the work of CNOT gate, which is the easier way
to obtain a pair of entangled qubits, the so-called Bell
states, represented in eqn. 9.

V2 V2

2
|Boo) = - |00) + 5 [11) 9)

|0) H

0) ——b-
Figure 2: Bell State

As it is well known, there exists no pair of qubits O, 0>
such that the separable system formed with them being
the Bell state, because from eqn. 6, we can see that no
pair of 6; and 6, angles may produce Bell state as their
tensorial product.

A Bell state may be obtained, as indicated in fig. 2,
by two qubits initialized to |0), then applying them a
Hadamard and a CNOT gates, producing the entangle-
ment. In this case, the last gate interchanges amplitudes
of vector basis |10) and |11).

We use the behavior of CNOT gate as inspiration, but
it is not enough to reach all possibilities of redistribu-
tion among the amplitudes of |10) and |11), thus, we
introduce a general gate to do this task, the controlled
on qubit one version of rotation Ry which we will call
A3 Ry(8), defined as the matrix

| 1 00 0
010 0
/2\Ry(93) | 0 0 cos@; —sin0; (10)
0 O sinB; cos6Bs

Thus, given two qubits |Q1),|Q>) and their tensorial
product |Q;) ® |Q2) in a separable state, we can obtain
all the possible combinations of modulus in the compo-
sition vector by applying the gate AR,. And, after that,
the rest of the possible phases in the component of the
vector by applying the gate AR;, in both cases with the
corresponding angles.

Finally, we have that for a general quantum system
of two qubits, if the 3 spheres for it are respectively
{(61,01),(62,02),(03,93)}, then the system described
by eq. 5 is now
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[Q10) = A3R(93)- AsRy(83)-(101) ®02))

rir o 0 O T r1 0 0 0 7]

~Jo 1 0 0 01 0 0

- 0O 0 1 0 0 O cos6; —sinbs
LO 0 0 €% | L0 0 sinB; cosbs
((co%%\O)-ﬁ—e‘*’l’sm%\l)) ® (cos%\O)-ﬁ—e“’Zisin%\l)))
rir o 0 O T r1 o0 0 0 ]

o 0O 1 0 O 0O 1 0 0

- 0O 0 1 0 | 0 0 cos@; —sinbs
LO 0 0 €% | L 0 0 sinB; cosbs

(cos 97‘ cos %2 |00) + cos %‘ sin %ze"“’Z |o1) +

sin & cos Z e [10) +sin & sin Zefl01+02) |11))

(11)
Note that, as previosly commented, in [NC11] is shown
that every state of a single qubit can be reached by ro-
tations indicated by two angles (0, ¢), and now we will
extend this idea showing that every possible entangle-
ment, also, may be described in terms of a similar rota-
tion described by other two angles.

Theorem 1 Let |Q10>) be a system of two qubits,
represented by a vector in the Hilbert space of ba-
sis {|00),]01),|10),|11)}, with complex components
[a,b,c,d]. Then, it is equivalent to represent the state by
means of 6 angles, {(6;,6,,63) € [0,7],(@1,¢2,¢3) €
[0,27]}. That is, by three Bloch spheres, where the
three first angles represent the longitude (Z axis), and
the other three the latitude (XY plane) of their corre-
sponding sphere, as it is shown in fig. 1.

Proof: We know that a single qubit may be repre-
sented by one Bloch sphere, as it is shown in eqn. 4.
Thus, in this case there exist a bijection between the co-
ordinates in eqn. 1 and the angles in the system of the
three Bloch spheres.

To prove our theorem, we proceed in three parts. In the
first one, we will show the bijection between the first
two amplitudes (a,b) of the vector and the angles of
the Bloch spheres of the two qubits, in case there are
real values with no phase.

In the second part, we will show the bijection between
the real part of the third and fourth amplitudes (c,d),
and the angle 03 of the third sphere, in the same case
considering no phase values.

Finally, in part 3, we will show the correspondence be-
tween the phase of the fourth amplitude (d) and the an-
gle @3 of the third sphere.

Part 1. In this part, let us suppose amplitudes are in the
real space, and we have not in consideration the phases.
Thus, according to eqn. 5, we have 4 positive real val-
ues (modules of the complex values) such that

A+ ++d* =1
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In this case, as we are omitting the phase angles, we
have only three angles: {6y, 6,, 63} in the three spheres.

We also consider, in this part, that the state of two qubits
has no entanglement, and therefore it consists of the
tensorial product of the two qubits states |Q;) and |Q»),
each one represented by a Bloch sphere, respectively

(61,1) and (62, ¢,).

Then the components a and b of the vector representing
the state of both qubits can be represented, by the angles
6, and 6, of the Bloch spheres. There is a bijection
between both representations.

That s, given a,b € [0, 1] witha®> +b* < 1,and 8y, 6, €
[0, 7]

Then, the function

f:]0,7)* —[0,1)

defined as

f(61,6,) = (a,b) = (cos6;/2-cosB,/2,cos0;/2-sin6,/2)

is bijective for all values of the domain and range, ex-
cept 6 = T.

To show that, we can see that the components a and b
represent the coordinates of a point in the interior of the
quadrant of the circle of radius 1 (See fig. 3). And then,
this condition is satisfied

cos’ 0, /2 =a* +1°

Whereas, in the triangle with sides {a, b,cos 8, /2} rep-
resented in fig. 3 we have that sin 6, /2 corresponds to
a and cos 6, /2 corresponds to b.

Therefore, and as it is shown in the figure, we can es-
tablish the indicated bijection f, which corresponds to
the description of the points inside the quadrant of the
circle with radius 1.

Thus, with the bijection f we have that is equivalent
the representation of the first half of the Hilbert space
vector (a,b), in their modulus of the complex numbers,
or by means of the angles 0; and 68,, with the exception
when 6; = 7, in which a = b =0, and angle 6, may take
any value. In this case, as all of them are equivalent, we
take 6, = 0 as the canonical representative.

Part 2. In this part, we extend the bijection f to cover
all the amplitudes of the vector of the Hilbert space
(a,b,c,d), but, as in the previous part, we consider only
the real part, skipping the phase, which will be dealt
with in the next part.

The amplitudes ¢ and d of the state vector representing
a quantum state of qubits Q; and Q, depend uniquely

Computer Science Research Notes - CSRN
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Figure 3: Correspondence between (a,b) and (6;,6,)

on a and b if the state is separable, since a separable
vector, as we have in eqn. 6 has the form

(a7 b7 C7 d) =
(cos 61 cos 65, cos 65 sin B>, sin 0] cos B, sin 6 sin H,)
(12)

Due to the fact that we are considering phase compo-
nents ¢; = 0 in this part.

In a separable state, therefore, we have verified that
with the angles 0; and 6, which represent the mod-
ules of the Bloch sphere of both qubits, we can reach
all the possible values of the components a and b of
the vector. However, ¢ and d amplitudes are predeter-
mined by the above values. The idea, now, will be to
incorporate a new sphere S3, with its two angles 65 and
@3, which will represent the module and its phase. For
now, in this part 2, we will focus on the action of the
angle 63, which will result in redistributing the unique
values for modulus of the amplitudes ¢ and d, predeter-
mined by the tensorial product of the qubits O and Q5,
in such a way that amplitudes (c,d) can map on all pos-
sible values in the space [—1,1] x [—1, 1], maintaining
the restriction that sum of squares are equal to 1.

To do this, we consider eqn. 11, where on the column
vector (a,b,c,d), which will represent the initial state
obtained through the tensor product of |Q) and |Q»),
is acting the quantum gate A' Ry(63) defined in eqn. 10

Thus, we need to check that the angles (6;,6,,65),
ranging each one in values in the interval [0, 7] will al-
low us to map the range of all the possible values of
the components of the vector (a,b,c,d), taking into ac-
count that the sum of the squares is 1, and therefore the
last amplitude is predetermined by the other 3.
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To do this, we have that amplitudes ¢ and d from appli-
cation of eqn. 11 are

¢ = sin6;/2-cos6,/2+cosB;3—
sin6; /2 -sin6, /2 - sin 65 (13)
d = sin6;/2-cosB/2+sin63+
sin @ /2 -sin6, /2 - cos 63
That is

CcC =

d=

sin6; /2 (cos 6,/2+cos 63 —sin 6, /2 - sin 63)
$in6; /2 (cos 62 /2 +sin B3 +sin 6, /2 - cos 63)
14

And, applying the definition of the trigonometric func-
tions of the sum of angles

¢ = sin6;/2-cos(6,/2+ 63) (15)
d = sin6/2-sin(6,/2+ 63)
From eqn. 15 we have that, as 6, and 63 range in

interval [0, 7] the sum of 6,/2 + 63 range in interval
[0,37/2]. And then, the value of cos(6,/2+ 63) maps
in the range from cos 6, /2 to cos(602/2 + 7), that is, all
the possible values in the interval [—1, 1]. The same can
be said about the value of sin(6,/2 + 63). We can see it
in the fig. 4.

In particular, the value of amplitude ¢ reaches its min-
imum, in absolute value, when 63 = /2 — 6,/2 in
which case is 0. And the maximum (in absolute value)
when 63 = T — 60,/2, when itis —sin 6; /2.

Figure 4: Range of 6,/2 + 63

Then, we can extend the function f defined as
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f:00,m — 0,12 x [—1,1]?

f(61792763) = (a,b,c,d) =
(cos61/2-cos0,/2,c080;/2-sin6,/2,
sin@;/2-cos(62/2+ 63),sin 61 /2 -sin(6,/2 + 63),)

(16)
Then f is bijective for all values of the domain and
range, except 8; = 7 and 0; = /2. In this case, there
is no possibility of entanglement, and every value for 63
is possible; thus, as all of them are equivalent, we take
63 = 0 as the canonical representative.

We need to note that in parts 1 and 2, we are consider-
ing the modulus of the amplitudes, and they are positive
real numbers. But in this case, as we have the sum of
angles 6 + 63 ranging on the interval [0,37/2], then
both the sine and the cosine of that sum can take neg-
ative values, and thus amplitudes ¢ or d may be nega-
tive. However, and as we will see in the next part of the
proof, this will not be a problem, because this question
of the sign will be treated as a change of the phase.

Part 3 We have already verified that the the 3 angles 6;
establish a bijection for us in the modulus of the four
complex amplitudes of the vector (a,b,c,d), with the
exception of the sign of a component, and taking into
account that the sum of the square of the values is equal
to 1. Now, to finish the proof, we need to take into
account the phase angles, and assume the general case
that the vector is not of real values, but complex.

First of all, we must remember from eqn. 4 that the
first amplitude, namely a, is not a complex value but a
positive real, and only the rest of the amplitudes, b, c,d,
will have an imaginary component (phase).

The phase is acting in the Bloch sphere, as it is indi-
cated in eqn.2. Until now, we have considered that the
phase angles have zero value, and we have only taken
into account the latitude angles, corresponding to the
modules of the amplitudes. This last part will be rela-
tively straightforward.

As indicated in 6, the tensorial product of two Bloch
spheres gives a quantum separable state.

0102) = cos%cos%mO)—l—
cos 9 sin /2 |01) +
sin % cos 21 [10) +
sin % sin & ef(01+92) | 11)

a7

As we can see, the phase of the qubit Q is transferred
to the amplitude of the base element |10) of the Hilbert
space, while the phase of the qubit O, does so on the
amplitude of the element |01). Finally, the phase of
the base element |11) is predetermined by the previous
ones, corresponding to the sum of both phases.
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Therefore, there exists a bijection between the phases
of the component qubits of a two-qubit system, and the
phases of the amplitudes b and ¢ of the vector repre-
senting the composition state. While the phase of the
last component is predetermined by the previous ones.

Therefore, given two qubits and their tensorial prod-
uct in a separable state, we can obtain the rest of the
states by applying the gate \' R.(¢), shown in eqn. 8,
where @ ranges in the interval [0, 27] to reach all possi-
ble phases for amplitude d, in order to do it independent
of the phases of the qubits components of the system.

Thus, we have that every quantum state of two qubits
can be represented by 3 Bloch spheres, that is, 6 angles,
in the form indicated in eqn. 11.

And finally, we have the bijection

f:]0,7® x[0,27] — C*

defined as

f((91,(P1)7(62,(,02),(63,§03),> = (aab7cvd) -
(cos0;/2-cos6/2, cosB;/2-sin6,/2-€'P2,
sinB/2-cos(62/2+ 63) - €1,
sin 0y /2 -sin(6,/2 + 63) - (911024 03))
(18)
which shows the equivalence of both representations.

O

Example 1 In Fig. 2 we can see the circuit for a Bell
State (|Boo)). The system can be described by the fol-
lowing spheres

Sl = (7[/2’0)
S» = (0,0) (19)
83 = (%/2,0)
cos 7 cos0
_ 1 Al . cos § sin0
‘BOO) - /\ZRZ(O) /\zRy(ﬂ/z) Sin%cosO
sin 7 sin0
V2
2
. 0
- 0
V2
2
(20)
O

Example 2 In Fig. 5 we can see the circuit for an en-
tanglement in the Z axis. Again, the system can be de-
scribed by three spheres, as we will indicate.

In this case, we have two qubits in a superposition state
by applying a Hadamard gate on each one, and then, a
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controlled Z rotation in the amplitude of |11) basis com-
ponent. As the Bell State, this quantum system cannot
be reached by two separate qubits, but it can be repre-
sented by the following three spheres.

S = (%/2,0)
S = (m/2,0)
S3 = (0,77.')

cos%cos%

T T

Zew) = AR(m) - ANJRy(0) - | SO0

A T g
s1n % C.OSE
sin T sSin T

Il
| ROl —

(S

@n
O

Corollary 1 Let |Q) = (a,b,c,d) be a vector in the
Hilbert Space of basis {|00),|01),]10),|11)} with real
components, then there exists one unique set of three
spheres, with phase 0 and modulus (6;, 6>, 63) such that
bijection f defined in eqn. 18 applies in the form:

f((6150)<6270)7(9350)):(aabacvd) (22)
Proof:

According to the definition of function f, we have that

cos (0/2) = Va’+b?
cos(6,/2) = a/cos(6,/2) (23)
cos(03+6:/2) = c¢/cos(6;/2)

O

Example 3 Let us suppose a quantum state, with
two qubits initialized, both with |0) and then, with a
Hadamard superposition. Thus, the two first compo-
nents of the vector are equal (a = b = 1/2). And let
us suppose with an arbitrary number in amplitude c,
say 1/3 as illustrated in fig. 6. The last amplitude is
such that the sum of the squares is 1, then the system
example is (1/2,1/2,1/3,1—+/1/2+1/9). Then, the

normal form by Bloch spheres is:

0 = 2arccos\/1/4+1/4=m/2

0, = 2arccos(1/2/cos(n/4))=m/2
03+ 6,/2 = arccos(1/3/cos(m/4))

0s = arccos (v/2/6) — /4

(24)
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Figure 6: Example of calculating entanglement sphere

S1 = (w/2,0)
S = (n/2,0) (25)
S3 = (arccos(v/2/6) —m/4,0)

Note that the procedure shown in this example is valid
for any value of real amplitude ¢ in a quantum state,
according to previous corollary 1.

]

We can find an asymmetry in the angles 0 of the Bloch
spheres, because spheres representing single qubits
range, in fact, in the interval [0,7/2], because they
are divided into 2, but the entanglement sphere is not
divided. In the next example, we show the necessity of
this

Example 4 Let us suppose a quantum state from a
Hadamard superposition, that is « = b = 1/2, and val-
ues ¢ = /2 /2, d = 0 for the other components. Then,
the values of the spheres for representing this system
are

S = (717/2,0)
S = (m/2,0)
S3 = (3m/4,0)

Where 63 > /2, and we need this, because it is neces-
sary in order to reach value O in the amplitude of basis
vector |11}, obtained with sin(6,/2 + 63) O

In equation 11 we have introduced the representation
model of a 2-qubit system by using 3 Bloch spheres,
each one of them described by two real parameters.
Then, with theorem 1, we have proved the equivalence
between this model and vectorial representation in a 4-
dimensional Hilbert space.

This bijective correspondence provides us with the ap-
propriate framework to define a unique Normal Form
that describes a two-qubit quantum system using six
real coordinates. However, we will introduce a dif-
ference for mathematical purposes in order to simplify
the notation. In the formula introduced in 11, we first
performed a tensor product between the two separate
qubits before introducing entanglement, and then ap-
plied the controlled rotations. This has a drawback from
the perspective of performing calculations, as there may
be a phase factor in the initial two qubits that, when the
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tensor product is applied, distributes among the com-
ponents of the vector, complicating subsequent calcula-
tions in the controlled rotations.

Nevertheless, as we have already verified in the proof of
Theorem 1, the task becomes easier if we separate the
calculations of the phases from the calculations of the
real parts (moduli). To this end, in the normal form we
are about to define, we will first perform the rotations
around the Y axis, and then the rotations around the Z
axis, both direct and controlled. In this way, we can
describe any two-qubit quantum state using a unique
normal form, which consists of six rotation gates, four
direct and two controlled, applied to a quantum state
initialized to the vector |00).

This is described by the following corollary:

Corollary 2 Given a general quantum system of two
qubits, there exists a unique normal form to represent it
by means of three Bloch spheres

Proof: From eqn.11 and bijection function in eqn. 18

10102) AsR(93)- A{R(91) - ASR:(¢2) -
A3Ry(63)- NTRy(61/2) - N3 Ry (62/2)-
|00)
cos 6;/2-cos 6,/2 |00) +
cos ) /2-sin6,/2- €2 |01) +
sin @y /2 - cos(62/2 + 65) - €'? |10) +
sin @y /2 -sin(6,/2 + 63) - (91024 P3).
1)

(26)

(]

4 CONCLUSION AND FUTURE
WORK

In this paper, we have presented a graphical model to
describe a two-qubit system using three Bloch spheres:
two spheres to model each of the qubits and another to
represent entanglement.

We have demonstrated the one-to-one correspondence
between the representation using elements of a 4-
dimensional Hilbert Space with complex coefficients,
where the sum of the squares of the amplitudes is 1,
and the representation using three spheres, each one
described by two angles (latitude and longitude). In
both cases, the representation is achieved using 6 real
magnitudes.

This modeling is the starting point of a broader work
in which it will be shown that this model can be ex-
tended, without any issues, to the general case of n
qubits. The work presented in [Whal6], as mentioned
earlier, is closely related to this presentation. However,
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their modeling using angles is done in an ad hoc man-
ner, without a clear approach that allows for general-
ization to an arbitrary number of qubits, whereas our
model is designed with this generalization in mind.

The generalization has a dual purpose for the future.
On the one hand, from a computer science perspec-
tive, it will provide an alternative model to the Hilbert
Space vector for representing data in a quantum com-
puter simulator, which could offer computational ad-
vantages. On the other hand, it will enable the de-
velopment of a theoretical framework to represent, not
only the elements of the Hilbert Space, but also quan-
tum gates themselves, represented by elements of Lie
groups of powers of 2 orders, i.e., SU(2), SU(4), SU(8),
etc. In this framework, gates are transformations be-
tween spheres, i.e., rotations, which will provide a new
and interesting framework for studying these models.
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