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Abstract

The Tracy-Singh product of matrices is a generalisation of the Kronecker product of matrices, called sometimes
the block Kronecker product, as it requires a partition of the matrices into blocks. In this paper, we give a survey on
the applications of the Tracy-Singh product in several different domains, and in particular in quantum computing.
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INTRODUCTION

The Kronecker product (or tensor product) of matri-
ces is a fundamental concept in linear algebra and the
Tracy-Singh product (TS) of matrices is a generalisa-
tion of it, called sometimes the block Kronecker prod-
uct, as they share many properties. While the Kro-
necker product of two matrices has a very natural inter-
pretation, indeed it represents the tensor product of the
corresponding linear transformations, it is not known
whether the TS has a general interpretation, and it is
not much understood. In this paper, we give a survey
on the Tracy-Singh product of matrices and on some
of its recent applications in several domains, as the
Yang-Baxter equation, and quantum computing. Fur-
thermore, some connections have been established be-
tween the TS product and a categorical construction.

1 PRELIMINARIES ON THE TRACY-
SINGH PRODUCT OF MATRICES
AND ITS PROPERTIES

We refer to [10], [17], [18], [23], [22] for more details.

Let A = (a;;) be a matrix of size m x n and B = (by) of

size p x q. Let A = (A;;) be partitioned with A;; of size

m; x nj as the ij-th block submatrix and let B = (By)

be partitioned with By; of size p; X ¢; as the kl-th block

submatrix (Ym; = m,Yn; =n,Y.px = p,Yq1 = q).
The Kronecker (or tensor) product and the Tracy-Singh
(or block Kronecker) product are defined as follows:

1. The Kronecker (or tensor) product:
AR®B= (Cl,'jB),'j

The matrix A ® B is of size mp X ng and the block
a;jBis size p x q.

2. The Tracy-Singh (or block Kronecker) product:
AN B = ((Aij®@Bu)u)ij
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The matrix A X B is of size mp x ng and the block
A;j ® By is size m;p X n;q. For non-partitioned ma-
trices, AX B = A ® B.

Example 1.1. We illustrate the Tracy-Singh product

5\ | 6
(56> (1 2)®(7 (1 2w 8)
= | -—- - - - - =2 «£ - |— — — — — — — - =
7|8 (3 4)®<§ (3 4@ g)
5 10,6 12
7 1418 16
15 20118 24~

In the following Theorems, we list important properties
of the Tracy-Singh product (TS).

Theorem 1.2. [23] Let A, B, C, and D be matrices.
Then

(i) AX B and BX A exist for any matrices A and B.
(ii) AXB % BXA in general.
(iii) (AKB)XC =AK (BXC).

(iv) (A+B)X (C+D)=AXKC+AXD+BXC+BKX
D, if A+ B and C + D exist.

(v) (AXB)(CX D)= ACKXBD, if AC and BD exist.
(vi) (cA)XB = c(AKB = AKX (cB).
(vii) (AXB)™!' =A~'XB~!, if A and B are invertible.
(viii) (AXB)' =A'KB.

(ix) I, X1, = L, for identity partitioned matrices.
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Note that for the Kronecker product of matrices, no par-
tition into blocks is needed.

Bi1 | Bz Bis
Yet,if A= ... veo | oo | ... ], then
B, | Buy | ... | Bps
B11®B | B2 ® B;;®B
ARB=
B,i®B | Bo®B B,,®B

In matrix theory, the commutation matrix is used for
transforming the vectorized form of a matrix into the
vectorized form of its transpose.

Definition 1.3. [18] The commutation matrix K,,,, is the
matrix defined by:

m

i=m j=n

t

Kmn: ZEij®Eij
i=1 j=1

where E;; is a matrix of size m x n with a 1 in its ij-th
position and zeroes elsewhere.

In words, K, is the square matrix of size mn, parti-
tioned into mn blocks of size n x m such that the ij-th
block has a 1 in its ji-th position and 0O elsewhere, with
Kun = K]

For example, K>3 = ( Ell i3 @2,1 + 1::31 ) where E;;

Ein 'Ex | E3
are of size 3 x 2 (see [18, p383]).

Theorem 1.4. [22], [18], [15] Let A be of size n X s
and B of size m x t. Let Ky, denote the commutation
matrix of size mn as in Definition 1.3. Then

(i) BOA = Kyn(A®B)Ky.

(ii) If A has a block partition into blocks A;j, 1 <i < p,
1< j<gq, all of size ' x s, and B has a block
partition into blocks By, 1 <k <u, 1 <[ <v, all
of sizem’ xt':

* AXB = (I, @K,y ®Ly) - (A®B) - (I; ®
Kv’v ®It’)~
« BXA=P-(AXB)- Q.

where P and Q are the following permutation ma-
trices:

P= (Iu ®Kpm’ ®In’) “ Kon - (Ip QK ®Im’)
0= (Iq R K,y ®It’) <Ky - (Iv ®Kt’q ®IS’)

For more general formulas, in the case that the blocks
do not have necessarily the same size, we refer to [15].
From Theorem 1.4 (ii) and (iii), the formulas connect-
ing AX B with B® A and with BXIA are reminiscent to
the formula of change of basis, but in general the per-
mutation matrices in Theorem 1.4 (i) or (iii) are not
the inverse one of another.
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The TS product of matrices is often called a block Kro-
necker product, as indeed the result of the product de-
pends on the block partition chosen for each matrix. In
the special case of a matrix A of size n*> x p?, there ex-
ists a unique block partition such that all the blocks are
matrices of the same size, that we call the canonical
block partition of A.

The following matrix is with its canonical partition into

1 1
( N I
o L|l-L o
blocks, ¢ = 0 ‘? 1‘/5 HE
_L 9 0 €L
V2 V2

It holds that, in the special case that A and B are of size
n? x p? and m* x ¢* respectively, with their canonical
block partitions, then AX B and A ® B are similar ma-
trices and the conjugating matrix is a permutation ma-
trix, as described in Proposition 1.5 which is a direct
application of Theorem 1.4.

Proposition 1.5. [15, 18, 22] Let A and B of size
n? x p? and m* x q* respectively, with a canonical block
partition (into blocks of the same size n X p and m X q
respectively). Let K, denote the commutation matrix

of size mn. Then

ARB = (I, @ Ky ®1,) - (A®B) - (I, 9K,y ®1,)
(1.1)

2 APPLICATIONS OF THE TRACY-
SINGH IN THE YBE AND CATE-
GORIES

In the following, given a linear operator ¢ : V. — V, we

denote also by c its representing matrix with respect to

the standard basis of V, so depending on the context we
consider either the operator or the matrix.

2.1 Preliminaries on the Yang-Baxter
equation (YBE)

Definition 2.1. [11, Ch.VIII] Let V be a vector space

over C. A linear automorphism ¢ of V ®V is said to

be an R-matrix if it is a solution of the Yang-Baxter
equation

(c@lIdy)(Idy ®c)(c@ldy) = (Idy ®c)(c®Idy)(Idy ®c)

2.1
that holds in the automorphism group of VRV V. It

is written as ¢'2¢3¢12 = 231223,

Example 2.2. ([13], [11])Letc,d:V®V -V ®V be
R-matrices, with dim(V) = 2:

S

1
o 0 u 20 0
0 —= ——% 0
c= ‘/F 1\5 and d = 0.0 1
o £ I o 01 15
_L 9 0 €1 0 0 O
V2 V2

Computer Science Research Notes - CSRN

N O OO


kiv
Rectangle


ISSN 2464-4617 (print)

ISSN 2464-4625 (online) QC-Horizon 2025

Here c(e1 ®er) = \iﬁel Rey + %62@)61, dley®ey) =
ey ® e1, with only ¢ unitary. As a convention, we al-
ways consider the basis {e; ®e; | 1 <i,j<n}of V@V
ordered lexicographically, that is, as an example, for
n = 2, the ordered basis of V@V is {ej ® e, e ®
ey, ey, e ®62}.

Any solution ¢ of the YBE yields a family of represen-
tations of the braid group B,:

Py : By — GL((C)™")
Oj— (Idd)®jil X c® (Idd)®n7j7]
where ¢ : (C%)®? — (C4)*? and

01,02, ...,0,_1 are generators of B,,.

2.2)

We recall two facts important for the computations: p;;
is a homomorphism of groups and the property (A ®
B) (C® D) = AC ® BD holds only if AC and BD exist.
As an example, if b = 6306403 € B,, where n =5, then
we have the following computation:
pi(b) = ((1dg)** @ ¢ @ (1dg)*")-
((1da)™* @ ¢ ® (1dg)*°)-
((1da)** ® ¢ @ (I1dg) ")

= (Idg)*? @ ((c®@1dg)(Idy @ c)(c@1dyg))  (2.3)

As ¢ satisfies Eq. (2.1), we have indeed that p$(030403) =

p;(040304).

Definition 2.3. [24] Let ¢ : (C4)*? — (C%)*2 be a so-
lution of the YBE. Let u € End(C?). Let p¢ be defined
as in Eq. (2.2). A pair (c, ) is an enhanced YBE pair
if

(i) ¢ commutes with yt ® u

(i) Tra(cou®?) = Try(c™' o u®?) = u, where Tr,
denotes the partial trace over the second factor.

Any oriented link is equivalent (ambient isotopic) to the
trace closure of some braid b, as illustrated in Figure
2.1. Using that fact, V. Turaev shows in [24], that if

Figure 2.1: The trace closure of the braid 630403 in Bs

(c, ) is an enhanced YBE pair, then there is an appro-
priately normalized trace (I.(b), b € B,,) of the repre-
sentations pj, that yields a link invariant:

I(b) = Te(p (b) o ") 2.4)
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As an example, if (¢, ) is an enhanced YBE pair, b =
030403 € Bs, then from (2.3)-(2.4):
1e(b) = Te(pS (b) o u®1) =
Te((((1da)*? © (c@1dg) (Idg @ ¢) (c @ 1dg))) 1)
= (2 ® ((c@1dg)(Idy ) (c® Idg)u™))
= Tr(u)> Tr((c®@1dy)(Idy @ ) (c @1dg)u®3)  (2.5)
The link invariant defined by Turaev is a generalisation

of the Jones link invariant. Indeed, for the following
specific matrices ¢ and p with coefficients in Z[/1, \iﬁ]

instead of C:

10 0 0

o 0o —vio (10

““lo —vi 1-1 0 a“d“_(o t)
o 0 0 1

I.(D) is equal to the Jones polynomial, up to some nor-
malisation.

2.2 Applications of the Tracy-Singh prod-
uct for solutions of the YBE

In [3, 4], it is shown that the TS product of linear oper-
ators (or matrices), with the canonical block partition,
is an efficient tool to construct linear operators (or ma-
trices) that preserves many of their properties. More
precisely:

Theorem 2.4. [3, 4] Let ¢, ¢’ : (C%)*2 — (C%)*2 be
linear operators. Let u,n € End(CY). Let cX ¢ :

((Cd2 )2 — (Cdz )2 be the linear operator obtained
from ¢/, the TS product of ¢ and ¢’ with the canonical
block partition for both matrices.

(i) If c and ¢ are automorphisms, then ¢ ¢’ is also
an automorphism.

(ii) If c and ¢’ are unitary, then cX ¢’ is also unitary.

(iii) If ¢ and ¢’ are R-matrices, then cX ¢ is also a
R-matrix.

(iv) If (c,pt) and (¢',n) are enhanced YBE pairs, then
(cX®, u®@mn) is also an enhanced YBE pair.

It results from Theorem 2.4, that the TS product, with
. the canonical block partition, enables the construction
. of infinite families of solutions of the YBE. A ques-
. tion that arises naturally, is why looking at the Tracy-
© Singh product of R-matrices ¢ and ¢’ and not at their

Kronecker product ¢ ® ¢’. The reason is that c ® ¢’ is
not necessarily a R-matrix. Indeed, a simple computa-
tion shows that for ¢ from Example 2.2, ¢ ® ¢ does not
satisfy the YBE.

In the case that ¢ and ¢’ are R-matrices, their TS prod-
uct with the canonical block partition coincides with
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the operation called the tensor product of R-matrices
in [5, 16], although it differs from the actual tensor
product ®. Indeed, in that specific case, Proposition
1.5 implies that the TS product represents the linear
transformation F3 (c®¢') Fo3 : C!@C¢@CloC? —
C!®C?®CY®C?, where F»3 exchanges the two mid-
dle factors [3]. More generally, if A and B are of
size n? x p? and m? x ¢ respectively, with a canonical
partition, then it results from Equation (1.1) that their
Tracy-Singh product represents a linear transformation
cRd: C"RC"RC"eC" - CPCICP®C? of
the form Fy; (c ® d) Fa3, where ¢ : (C")®? — (CP)%?
and d : (C™)*2 — (C%)®2, and F>3 exchanges the two
middle factors.

The cabling operation of R-matrices is defined in [25]
to construct new solutions of the YBE from an existing
one. Itis induced from the cabling of braids, which con-
sists roughly in multiplying the strings in a given braid.
S. Majid suggested there may be some connection be-
tween the cabling operation and the TS product of solu-
tions of the YBE ([19] and see [20] for reference). This
is a direction of current research we are interested in.
Indeed, we study whether there is a connection between
the cabling operation and the TS product of solutions of
the YBE and if the answer is positive to understand its
nature. Furthermore, we explore the possible implica-
tions of these constructions in the context of quantum
computation and the design of quantum circuits.

2.3 Applications of the Tracy-Singh prod-
uct in monoidal categories

The Tracy-Singh product of matrices has also a surpris-
ing connection with a categorical construction that we
describe in the following. Indeed, it can be defined as
the monoidal product (or a tensor functor) in a partic-
ular category of vector spaces, in which the canonical
partition into blocks is ensured.

The category Vec is a symmetric monoidal category,
with objects all the finite dimensional vector spaces
over a fixed field, let’s say C, and morphisms the linear
transformations between vector spaces. The monoidal
product is the functor ® : Vec x Vec — Vec that sends
each pair of objects (U,V) to U®YV and each pair of
morphisms (f,g) to f ® g, and its unit object is C. Fur-
thermore, Vec ® Vec can be defined and it is also a sym-
metric category [8, Section 4.6], [7, Lecture 9, p.90],
with the following particular symmetric subcategory:

Diag ={URU | U € Vec} C Vec® Vec

In [3], it is proved that the Tracy-Singh product of the
representing matrices (with respect to standard bases
for example) of morphisms ¢ and ¢’ in the category
Diag is a functor, and it can be defined as the monoidal
product in Mor(Diag). As we recall, to apply the

http://www.doi.org/10.24132/CSRN.2025-A31
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Tracy-Singh product on matrices they have to be parti-
tioned into blocks. If the matrices have arbitrary sizes,
they cannot be necessarily partitioned into blocks of the
same size. However, if a matrix A has size of the form
n® x p?, n,p not necessarily different, then there is a
canonical partition of A, where all the blocks have the
same size n X p. The existence of such a canonical par-
tition is ensured for representing matrices of morphisms

in Diag, but not in Vec ® Vec in general.

3 APPLICATIONS OF THE TRACY-
SINGH PRODUCT IN QUANTUM
COMPUTING

3.1 Preliminaries on quantum computing
and quantum entanglement

We follow the presentation from the reference books on
the topic [21], [9] and the papers [2], [12, 13, 14] and
we refer to these references and the vast literature for
more details.

Definition 3.1. Let C? be the two-dimensional Hilbert
space with two orthonormal state vectors, denoted by
| 0) and | 1), that form a basis in bijection with the stan-
dard basis {(1,0),(0,1)}. A qubit (or quantum bit) is a
state vector in C?

(o) =a|0)+B 1)

where o, € C and | & |2 + | B |>= 1. We say that any
linear combination of the form (3.1) is a superposition
of the states | 0) and | 1), with amplitude « for the state
| 0) and B for the state | 1).

@3.1)

Intuitively, the states | 0) and | 1) are analogous to the
two values 0 and 1 which a bit may take. The way a
qubit differs from a bit is that superposition of these
two states, of the form (3.1), can also exist, in which it
is not possible to say that the qubit is definitely in the
state | 0) or definitely in the state | 1). A measurement
of a qubit | ¢) = & | 0) + 8 | 1) provides as output the
bit 0 with probability | & |> and the bit 1 with proba-
bility | B |> and the state | ¢) collapses to | 0) or | 1).
After the measurement, all the information about the
superposition is irreversibly lost. Examples of qubits
include the spin of the electron in which the two basis
states are spin up and spin down, and in this case the
basis is denoted by { |1}, |{) }; or the polarization of a
single photon in which the two basis states are vertical
and horizontal, and in this case the basis is denoted by
{1, 1) }.

More generally, a n-qubit is a state vector in the 2"-
dimensional Hilbert space, with an orthonormal basis
{] vi) |1 <i<2"}inbijection with the standard basis,

of the form
i=2"

o)=Y o; | w) (3.2)
i=1
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i=2"

where o; € C, 1 <i<2" and ¥ | o;[>=1. Asan
i=1

example, a two-qubit has the form

‘ ¢> = Qoo |00>+O€01 |0]>+0610 ‘ 10>+OCH ‘ ]])
(3.3)
In analogy with the case of a qubit, a measurement of a
n-qubit of the form (3.2) gives as outcome n bits, each
n-tuple of bits with a precalculated probability. More-
over, the state | ¢), in the superposition of the 2" basis
states, collapses to just one of the basis states.

Definition 3.2. Let C? be the d-dimensional Hilbert
space with orthonormal base denoted by | 0), | 1), ...,
and | d —1). A qudit is a state vector in C?, where

i=d
a;€Cand Y, |OC,' |2= 1:
i=1

|¢) =01 |0)+...+0aq |d—1) (34)

Any linear combination of the form (3.4) is a superpo-
sition of the states | 0),..., | d —1).

A qubit is a special case of a qudit, for the case d = 2.
A n-qudit is a state vector in the Hilbert space (C¢)®".
A quantum system with one state vector | @) is called a
pure state. However, it is also possible for a system to
have a set of potential different state vectors. As an ex-
ample, there may be a probability % that the state vector
is | ¢) and a probability ; that the state vector is | y).
This system is said to be in a mixed state. There exists
a matrix called density matrix which trace value deter-
mines whether a system is in a pure or a mixed state
[21, p.99].

Definition 3.3. A n-qudit | ¢) is decomposable if | ¢) =
|01)® | §2) ® ...® | @), where | ¢;) € C, for1 <i<
n. Otherwise, | ¢) is entangled.

As an example, | ¢7) = % (100)+ | 11)) is an entan-
gled two-qubit, since it cannot be decomposed as a ten-
sor product of two qubits. In general, a two-qubit pure
state | @) = oo | 00) + o1 |01) + oo | 10) +aqp | 11)
is entangled if and only if agoo; — o1 o9 # 0. In [?],
the authors give a combinatorial criteria to determine
whether a n-qubit is entangled or not.

Any quantum evolution of a n-qudit, or any quantum
operation on a n-qudit is described by a unitary operator
or square unitary matrix of size d", called a (quantum)
n-qudit gate, which transforms | ¢) = lZd o; | y;) into
another linear combination of the (standlard) basis states
{lw) [1<i<a"}.

Example 3.4. Let c be the unitary R-matrix from Ex-
ample 2.2. So, c is a 2-qubit (YBE) gate and it acts
on the basis states { | 00), | 01), | 10), | 11) } of (C?)®2,
with | 00) =] 0)® | 0), | 01) =] 0)® | 1), and so on,

http://www.doi.org/10.24132/CSRN.2025-A31
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suchthatc|00>:iz|00>f% |11>’C‘01>:¢2|
01) + 75 | 10), ¢ | 10) = —J5 [ 01) + J5 | 10) and

c|11) = 55 100) + o5 | 11).

Example 3.5. A very important example of 2-qubit gate
is the following unitary square matrix of size 4 which

1 0 0 O
. 101 0 0.
acts on 2-qubits: CNOT = 00 o0 1l° not an R-
0 0 1 0

matrix.

Definition 3.6. [2] A 2-qudit gate L: (C%)®? — (C4)®?2
is primitive if L maps decomposable 2-qudit to decom-
posable 2-qudit, otherwise L is said to be imprimitive.

In other words, a 2-qudit gate L is said to be imprim-
itive, if there exists a decomposable 2-qudit | ¢) such
that L | ¢) is an entangled 2-qudit. An imprimitive 2-
qudit gate is often called entangling, as in [13]. There
is a criteria to determine whether a 2-qudit is primitive.

Theorem 3.7. [2] Let P: (C?)®? — (C%)%? denote the
swap gate, that is the 2-qudit gate such that P | aff) =
| Ba). Let L: (C)%? — (C?)®? be a 2-qudit gate.
Then L is primitive if and only if L= L1 Q Ly or L =
(L1 ® Ly) P, for some 1-qudit gates Ly, Ly.

In [13], the authors answer the question of which 2-
qubit gates which satisfy the YBE are entangling, using
the classification from [6] and the criteria for entangle-
ment from [2]. The 2-qubit gates from Examples 3.4
and 3.5 are both entangling operators [9, 13, 21]. Note
that not every 2-qubit gate that is an R-matrix is en-

1 0 0 O
tangling. Indeed, let ¢ = 8 (1) (1) g be a R-
0 0 0 1

matrix of size 4. It is easy to show that the 2-qubit
gate cp is primitive. Let | ¢) = ago | 00) + o |
01) + oo | 10) + oy | 11) be a decomposable two-
qubit pure state, that is oo — Qo1 9o = 0. Then
2,1 | @) = oo | 00) + oo |O1) +otor | 10)+ oy | 11)
and oo — 01 = 0, thatis ¢ 1 | @) is decompos-
able.

3.2 Applications of the Tracy-Singh prod-
uct in quantum computing

The Tracy-Singh product is an efficient tool to create

entangling and primitive 2-qudit gates, as it preserves

these properties in the following way:

Theorem 3.8. [3] Let ¢ : (C")*? — (C")®? and ¢’ :
(C™)®2 — (C™)®? be 2-qudit gates. Let cX ¢’ denote
their Tracy-Singh product, with the canonical block
partition.
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(i) Assume c is entangling. Then cX ¢’ : (C"™)*? —  partition. Then cXc’ = (I; @ PR1) (c®) (1@ P®

(C"™)®2 is also entangling.

(ii) Assume c¢ and ¢ are primitive. If c = c| ® ¢
and ¢ =y ®c, or ¢ = (c1 ®c2)Se and ¢’ =
(¢ @ ch)Sa, where S, and S,, are the swap maps
on (C")®? and (C™)®? respectively. Then ¢ X
¢ (Cmy®2 5 (C™)®2 s also primitive (of the
same kind).

Combining Theorem 2.4 with Theorem 3.8 ensures the
existence of entangling and primitive 2-qudit YBE gates
for every d > 2. More precisely:

Theorem 3.9. [3] Let d > 2 be any integer. Then, there
exists an entangling 2-qudit YBE gate U : (C?)®? —
(C9)*? and a primitive 2-qudit YBE gate S : (C4)®? —
((Cd)®2.

Note that, in the same way that an entangling 2-qudit
(YBE or not) gate is not the tensor product of two gates,
an arbitrary 2-qudit (YBE or not) gate is not necessarily
the TS product of two gates. If the theory develops,
maybe a name should be coined to describe that.

Definition 3.10. [2] A collection U of 1-qudit gates
{S;} and 2-qudit gates {U;} is called universal if, for
each n > 2, every n-qudit gate can be approximated
with arbitrary accuracy by a circuit made up of the n-
qudit gates produced by the {S;} and {U;}, and it is
called exactly universal if, for each n > 2, every n-qudit
gate can be obtained exactly by a circuit made up of the
n-qudit gates produced by the {S;} and {U;}.

In [2], it is proved that U is entangling if and only if
U is exactly universal, which means that the collec-
tion of all 1-qudit gates together with U generates the
unitary group U((C4)®"), for every n > 2. Since for
every integer d > 2, there exists an entangling 2-qudit
gate U : (C4)®? — (C%)%2, where U satisfies the YBE
(Theorem 3.9), one can assume that for every d > 2,
there exists an exactly universal set of gates U, with a
single 2-qudit gate U. This enables to show that, when-
ever the realisation of the gates ¢,c’ : (C?)®? — (C?)%?
in terms of gates from U, is given, there is a simple way
to realise the 4-qudit gate cX ¢’ : (C4)®* — (C4)** in
terms of the gates from U, [4]. That is, although the TS
product of matrices is quite esoteric, its implementation
is in fact simple. Indeed:

Proposition 3.11. [4] Let ¢,c/, P: (C))®2 — (C4)®?
be 2-qudit gates, with P the swap map. Let cX ¢ :
(CH* — (C4)®* be the 4-qudit gate defined by their
Tracy-Singh product ¢ X c¢" with the canonical block
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From Theorems 3.8-3.9, given an entangling 2-qudit
gate it is possible to create infinitely many other en-
tangling gates with the TS product, and each of them
can be included in an exactly universal set of gates U,.
A question that arises naturally is which gate is it "bet-
ter" to insert in Uy, the original one or one of the gates
obtained in the process. Another natural question is
whether universal gates obtained from the TS product
offer more advantages in terms of implementation than
other universal gates.

The question whether a YBE gate is primitive has found
an interesting application in the domain of knot invari-
ants. Indeed, in [1], the authors prove that if a YBE
gate c is primitive, then the link invariant /. obtained
from c, using the Turaev construction, is trivial, and
that the converse is not necessarily true. Indeed, they
give an example of entangling YBE gate that leads to a
trivial link invariant. Furthermore, if (c,tt) and (¢’,n)
are enhanced YBE pairs, such that ¢ and ¢’ are prim-
itive of the same kind, and u, n are invertible, then
Lo (b) = 1.(b) - 1/(D), for every b € B, [4]. Tt would
be interesting to understand whether the connection be-
tween primitive gates and link invariants is purely theo-
retical, or it could be useful to identify quantum advan-
tages.

To conclude this paper, we would like to point on some
more open questions and future directions of research
which are in direct continuation with the results in this
paper. It would be interesting to explore if there are
some specific algorithms for which the use of gates
obtained from the TS product offers some advantages
in circuit depth or on other parameters to be defined
and leads to a more efficient implementation. It would
be also interesting to study the robustness of the TS
generated gates to common noise model and explore
implementations for specific hardware platforms. The
creation of an open-source software library that imple-
ments the TS generated gates and its use in gate synthe-
sis for popular quantum computing frameworks may be
useful to increase the list of gates.

A question of particular interest in a more mathemati-
cal viewpoint is the following: how does the fact that
c is an entangling or a primitive gate influence the link
invariant I.? Every YBE 2-qudit gate (or R-matrix) ¢
induces a representation p;; of the braid group B, as de-
fined in Equation (2.2) and a link invariant /. as defined
in Equation (2.4). In [1], the authors answer partially
the question cited above. Indeed, they show that if ¢
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is a primitive YBE gate, then /. is trivial and that the
converse is not always true. It would be interesting to
understand whether there exist some other connections
between the properties of the YBE gate and link invari-
ants in general.
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