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ABSTRACT

Quantum computing has the potential to significantly improve large-scale optimization, particularly in logistics.
However, practical adoption remains limited due to fragmented hardware ecosystems and the complexity of quan-
tum programming. We present MDE4QC, a model-driven engineering framework that introduces a Platform-
Independent Model (PIM) for defining routing problems at a high level of abstraction. The framework auto-
matically transforms these models into executable code for quantum annealers, gate-based quantum systems, and
classical solvers. MDE4QC is integrated with cloud platforms such as D-Wave and IBM Qiskit and supports hybrid
execution flows. An intuitive graphical interface enables users to define routing problems without writing quantum
or classical code. Users simply select the target platform and configure problem parameters through a user-friendly
interface; the framework handles model generation, transformation, and execution. We validate MDE4QC using
open-access real logistic data from the City of Antwerp to demonstrate its ability to reduce development effort,

ensure cross-platform portability, and deliver measurable gains in routing efficiency.
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1 INTRODUCTION

Quantum computing holds great promise for solving
large-scale optimization problems [} 2f], especially in
fields like logistics and transportation [3]. However,
its adoption in real-world applications remains lim-
ited [4]. One of the key challenges is the hetero-
geneity of the current quantum ecosystem: Different
hardware providers, programming interfaces, execution
pipelines, and cloud platforms make development com-
plex and fragmented.

Model-Driven Engineering (MDE) has a proven history
in classical software engineering to reduce complexity
by enabling users to work at a higher level of abstrac-
tion [5) 16, [7]. It simplifies development through au-
tomatic code generation and platform-independent de-
sign.

In this paper, we use MDE4QC, a framework that
brings the principles of MDE to quantum comput-
ing [8, 9]. MDE4QC allows users to define routing
problems using a hardware-agnostic model, which
can then be automatically transformed into executable
code compatible with various quantum and hybrid
backends. Through a case study on multi-vehicle route
planning, we demonstrate how this approach can make
quantum-enhanced optimization more accessible to
logistics practitioners without requiring deep expertise
in quantum computing.

http://www.doi.org/10.24132/CSRN.2025-A29

1.1 Motivation and Problem Statement

Modern logistics increasingly relies on solving high-
frequency, large-scale routing problems with high pre-
cision. This is pivotal not only for reducing operational
costs and ensuring timely deliveries but also for ad-
dressing larger systemic issues such as fuel efficiency
and urban traffic congestion. As the number of vehi-
cles, operational constraints, and dynamic environmen-
tal factors grow, the complexity of these optimization
problems often exceeds the capabilities of traditional
computational methods [[10].

Quantum computing presents a promising frontier for
addressing such combinatorial optimization problems.
Yet, the current quantum ecosystem is highly frag-
mented. The coexistence of multiple hardware ven-
dors, inconsistent programming interfaces, and hetero-
geneous execution models introduces substantial tech-
nical overhead [[11]]. For logistics professionals lacking
a background in quantum technologies, these inconsis-
tencies pose a significant barrier to effective adoption.
Quantum cloud services have made it easier to access
quantum hardware, but variations in how each plat-
form works and the different programming languages
they use still make it difficult to combine them effec-
tively. Implementing and maintaining quantum algo-
rithms across various providers still demands advanced
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expertise and often leads to redundant development ef-
forts.

This context underscores the value of a model-driven
approach. Our proposed framework, MDE4QC
(Model-Driven Engineering for Quantum Computing),
mitigates these challenges by providing platform-
independent abstractions, automated model-to-model
transformations, and infrastructure-agnostic execution
pathways. This enables logistics experts to specify
routing problems using high-level modeling constructs,
while the system transparently handles the synthesis
and execution of suitable quantum or hybrid solutions
based on the current computational resources.

Crucially, the benefits of MDE4QC extend beyond
computational performance. By enabling more ef-
ficient routing, the framework contributes to the
reduction of fuel consumption and greenhouse gas
emissions—particularly vital in urban contexts where
smart routing directly affects environmental sustain-
ability. Moreover, by integrating live data streams such
as traffic conditions and weather forecasts, MDE4QC
could facilitates adaptive, eco-aware decision-making.
These capabilities support broader policy objectives,
such as those outlined in the European Green Deal,
and emphasize the framework’s societal impact and
alignment with sustainable development goals [12].

1.2 Objectives and Contributions

This paper makes the following key contributions to the
field of quantum-enabled logistics optimization:

1. MDE4QC Framework: Transforms high-level logis-
tics problems into executable solutions for classi-
cal, quantum, and hybrid platforms. Model Trans-
formation of this framework converts abstract mod-
els into validated, optimized, and deployable code
across platforms [13]].

2. Platform-Agnostic Modeling: Uses a domain-
specific language to support classical (e.g.,
K-Means, GNN), annealing, and gate-based quan-
tum methods [14]. This modelling language allows
users to define routing problems graphically, with
no coding required (no code approach) [15]].

3. Solver Selection: Chooses the best solver based
on problem size, hardware availability, and cost-
performance trade-offs. The cloud integration of the
framework connects with major quantum and classi-
cal platforms as solvers for automated execution and
result collection [16].

4. The City of Antwerp Case Study: Validated on real
routing data from the City of Antwerp to benchmark
solver performance [[L7]. It uses live traffic and en-
vironmental data to cut fuel use and emissions [18]].
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This paper is organised as follows: Section 2 discusses
the related work in the literature. The fundamentals
and background for this study are elaborated in Sec-
tion 3. Section 4 presents the architecture for the pro-
posed framework and discusses its implementation de-
tails. The framework is evaluated in section 5 using a
case study, and the results are discussed in section 6.
Finally, the paper is concluded in section 7.

2 RELATED WORK

In recent years, the convergence of quantum comput-
ing and route optimization has garnered substantial in-
terest, driven by the need to address scalability chal-
lenges that classical methods often encounter. Tradi-
tional techniques for solving the Multi-Vehicle Routing
Problem (MVRP), including mixed-integer program-
ming, evolutionary strategies, and more recently, ma-
chine learning-based approaches such as Graph Neural
Networks (GNNs), have achieved notable success [[19,
20]. Nevertheless, these models frequently face dif-
ficulties in handling high-dimensional, constraint-rich
scenarios, especially in real-time urban logistics envi-
ronments.

Quantum computing introduces a new paradigm for
tackling combinatorial problems by Utilizing unique
properties such as superposition and entanglement. No-
table frameworks, including the Quantum Approximate
Optimization Algorithm (QAOA) [21]] and the Binary
Quadratic Model (BQM) utilized in D-Wave sys-
tems [22], have shown promising results in constrained
optimization tasks. Fitzek et al. [23] demonstrated
the effectiveness of QAOA in heterogeneous vehicle
routing scenarios, underscoring the advantages of
quantum speedup under certain conditions. Further
studies by Willsch et al. [24] and Neukart et al. [25]]
applied quantum annealing to traffic-aware routing,
although their implementations were limited by current
hardware constraints and embedding overheads. A
central barrier to the broader adoption of quantum ap-
proaches lies in the fragmented nature of the quantum
computing landscape. Each platform typically requires
distinct programming interfaces and problem formu-
lations, which complicates the development process
and inhibits portability. To mitigate this, researchers
have increasingly adopted Model-Driven Engineering
(MDE) techniques to introduce abstraction layers and
reduce platform dependency. One early example is
the MDE4QP framework [26], which applied model-
driven principles to quantum chemistry, facilitating
code generation for both gate-based and annealing
architectures through automated transformations.

This paper builds upon that foundation by presenting
MDE4QC, a model-driven framework specifically de-
signed for quantum-enhanced logistics optimization.
MDEA4QC introduces a domain-specific modeling lan-
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guage (DSML) and transformation pipeline that sup-
ports both classical and quantum solvers, including
IBM Qiskit and D-Wave. Unlike prior tools, MDE4QC
allows users to define problems through a visual inter-
face and execute solutions across heterogeneous plat-
forms without requiring low-level quantum program-
ming expertise. Empirical validation using open urban
data further emphasizes the framework’s applicability
to real-world logistics problems.

MDEA4QC supports cloud-native deployment via an in-
teractive dashboard and RESTful APIs. The API is de-
signed to let external systems bypass the Ul and com-
municate directly with solvers, enabling automation
and integration in industrial workflows. The framework
aligns with recent advances in hybrid quantum-classical
computing [27] and supports scalable, interoperable so-
lutions for smart cities and complex logistics systems.

3 FUNDAMENTALS

This section elaborates on the fundamental topics
required to understand this paper, including Model-
Driven Engineering (MDE), MDE for Quantum
Computing, Platform Independent Modelling, QAOA
algorithm and quantum anealling samplers.

3.1 Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) is a software devel-
opment paradigm that prioritizes the use of high-level,
abstract models as the core artifacts throughout the en-
gineering process. Instead of relying primarily on man-
ually written source code, MDE emphasizes the use of
domain-specific modeling languages (DSMLs) to rep-
resent the key aspects of a system or problem domain.
These models become the basis for both system design
and implementation [28, [29]].

By elevating the level of abstraction, MDE facilitates
clearer communication among stakeholders, supports
early validation of system designs, and promotes the
reuse of established architectural patterns. Through au-
tomated model-to-model and model-to-code transfor-
mations, MDE streamlines code generation and min-
imizes manual implementation errors. This method-
ology has demonstrated particular value in complex
and heterogeneous environments, including embedded
systems, enterprise platforms, and automotive domains
such as AUTOSAR [30} 31]].

3.2 MDE for Quantum Computing
(MDE4QC)

Quantum computing platforms are inherently diverse.
Gate-based systems and quantum annealers represent
two fundamentally different approaches to quantum
computation. In addition, real-world systems are
deployed across hardware with distinct capabilities,

http://www.doi.org/10.24132/CSRN.2025-A29

Quantum Informatics, Computing & Technology 2025

https://www.qc-horizon.eu/

connectivity constraints, and programming interfaces.
This variability creates a fragmented ecosystem,
making development more difficult and reducing the
portability of algorithms.

Our previous work on ground state energy calculations
introduced a unified framework, MDE4QP, that uses
model-driven abstractions to bridge the gap between
quantum annealing and gate-based models. That frame-
work demonstrated how domain-specific abstractions
could be translated into platform-specific implemen-
tations via systematic model-to-model and model-to-
code transformations, allowing the same solution to be
expressed and executed across both types of quantum
device [8]].

In this paper, we extend that vision to a new applica-
tion domain, multivehicle routing optimization, where
quantum computing shows promise but suffers from
the same fragmentation and entry barriers. MDE4QC,
our updated framework, enables users to define routing
problems at a high level using a platform-independent
modeling language. These models are then automati-
cally transformed into quantum formulations suited for
specific architectures, such as Binary Quadratic Mod-
els (BQM) for D-Wave annealers or Qubit-Hamiltonian
expressions for variational quantum algorithms (VQASs)
on platforms like Qiskit or Cirq.

This abstraction allows algorithm designers and lo-
gistics practitioners to express optimization problems
without needing deep knowledge of quantum physics,
hardware, or SDKs. Moreover, it supports cross-
platform evaluation, facilitating empirical comparisons
between quantum annealing and gate-based solutions
on real-world routing problems [9]].

Building on insights from our prior research, this work
prioritizes hardware-agnostic modeling, automated
transformation pipelines, and a standardized develop-
ment lifecycle. The result is a robust framework that
not only simplifies quantum software engineering but
also brings practical quantum optimization closer to
adoption in industrial and urban logistics.

3.3 Quantum Approximate Optimization
Algorithm (QAOA)

The Quantum Approximate Optimization Algorithm
(QAOA) is a hybrid quantum-classical approach
designed to solve combinatorial optimization prob-
lems by alternating quantum operators derived from
problem-specific cost and mixing Hamiltonians [21].
In this work, we integrate QAOA with Graph Neural
Networks (GNN5s) to address traffic route optimization
in urban transportation networks. The GNN models
dynamic traffic conditions using spatiotemporal data
and updates edge weights representing congestion and
travel times [32]. These predicted weights are encoded
into a cost Hamiltonian that guides the QAOA circuit
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Figure 1: MDE4QC Framework for Hybrid Quantum-Classical Route Optimization. The PIM layer defines
platform-independent route optimization models, while the PSM layer specifies platform-specific implementa-
tions using Qiskit (IBM Quantum), Ocean SDK (D-Wave), or classical methods (GNN, K-Means).

toward optimal routing decisions [33]. The hybrid
framework leverages GNNs for learning accurate
traffic patterns and QAOA for efficient exploration
of optimal paths via quantum state evolution. This
integration offers a scalable and adaptive solution for
real-time route planning, logistics optimization, and
intelligent transportation systems, particularly suited
for deployment on near-term quantum devices.

3.4 Quantum Annealing Samplers

Quantum annealing samplers serve as critical interface
engines that facilitate practical implementation of adia-
batic quantum computation for large-scale optimization
problems [34]]. The LeapHybridNLSampler spe-
cializes in non-linear optimization formulations, auto-
matically performing problem decomposition and vari-
able embedding to handle complex routing constraints
[35]. The LeapHybridDQMSampler operates on
Discrete Quadratic Model formulations, mapping dis-
crete decision variables to quantum annealing problems
with penalty-based constraint enforcement [36]. These
samplers implement intelligent partitioning strategies
that identify subproblems suitable for quantum acceler-
ation while delegating preprocessing tasks to classical
algorithms [37]. The hybrid architecture automatically
handles quantum embedding, error mitigation, and so-
lution validation, making quantum annealing accessible
for enterprise-scale logistics optimization [38]].

3.5 Platform Independent Modelling

Cloud-based quantum computing platforms such as
IBM Qiskit, Google Cirq, Amazon Braket, and D-
Wave Leap enable users to execute quantum algorithms
remotely via their respective SDKs [39] 140, 41} 142]].
These environments primarily support Python, but
are increasingly extending compatibility to other
programming languages including C++, JavaScript,
and Q# through RESTful APIs, Jupyter notebook inter-
faces, and language bindings. Additionally, they offer
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graphical user interfaces, quantum simulators, and
visualization tools that facilitate both beginner-level
experimentation and the development of advanced
quantum applications.

Despite these advancements, a critical challenge to
the practical adoption of quantum computing remains:
platform fragmentation. Each provider defines dis-
tinct programming paradigms, toolchains, and circuit
specification interfaces. As a result, developers must
master multiple APIs and re-implement problem logic
to accommodate each backend, posing a significant
barrier to entry and scalability [43| 44].

To address this limitation, we propose the Model-
Driven Engineering for Quantum Computing
(MDE4QC) framework, which introduces a Platform-
Independent Modeling (PIM) methodology specif-
ically adapted for quantum applications. Rather than
writing platform-specific code, users define high-level,
platform-agnostic models of their problems—such
as a multi-vehicle routing scenario. These abstract
specifications are then automatically transformed into
Platform-Specific Models (PSMs) tailored to the
syntax and semantics of the target quantum backends.
For instance, a single PIM model can be mapped to
a variational quantum circuit in Qiskit or translated
into a quantum annealing formulation compatible with
D-Wave’s architecture. The overall architecture of the
MDE4QC framework is illustrated in Figure[T]

This model-driven approach abstracts away the need
for backend-specific programming skills. = Domain
parameters—such as the number of vehicles, route
constraints, cost objectives, or Ising model represen-
tations—are captured declaratively within the PIM.
They are subsequently compiled into executable code
via automated model transformations. Tasks that
traditionally required extensive manual coding and
SDK-specific integration are now streamlined into a
fully automated workflow.
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In our prior work, we demonstrated this capability by
deploying a unified PIM for ground state energy esti-
mation on both Qiskit and D-Wave platforms without
modifying the original model [10]. Here, we extend
this methodology to quantum-enhanced logistics op-
timization, enabling seamless execution across hetero-
geneous quantum environments [45].

4 ARCHITECTURE AND IMPLEMEN-
TATION

The system uses a modular, layered architecture that
clearly separates different tasks and allows easy inte-
gration of classical and quantum optimization methods.
Each layer can be extended independently and commu-
nicates with others through defined interfaces (see Fig-
ure 2] for an overview).

The development of this framework involved adapt-
ing key back-end-specific implementations from exist-
ing open-source projects. In particular, the routing op-
timization component for the D-Wave back-end was
originally derived from the D-Wave Ocean SDK exam-
ple repository, which provided a robust foundation for
quantum annealing-based formulations [46]. We grate-
fully acknowledge D-Wave Systems Inc. for making
these examples publicly available. Furthermore, our
complete implementation, including model transforma-
tions and platform-specific templates, is made openly
accessible via the MDE4QC GitHub repository [47]].

4.1 Solvers Group

The solvers group represents the computational center
of the system, divided into quantum and classical com-
ponents. The quantum solvers utilize both D-Wave’s
annealing technology and IBM’s gate-based quantum
computing capabilities. The D-Wave integration in-
cludes specialized samplers for different problem types,
while the IBM Quantum integration provides QAOA
implementation with configurable optimization param-
eters.

The D-Wave implementation employs two hybrid

quantum-classical samplers: LeapHybridNLSampler

and LeapHybridDQMSampler. The former targets
non-linear optimization problems such as complex
routing scenarios, while the latter is suited for Discrete
Quadratic Models (DQMs). Both samplers automate
problem decomposition, embedding, and qubit map-
ping, enabling scalable optimization with built-in
solution validation.

The IBM Quantum pipeline applies QAOA via Qiskit
to solve the Capacitated Vehicle Routing Problem
(CVRP). The problem is formulated using binary
variables within the QuadraticProgram class,
converted to a QUBO, and optimized using the
MinimumEigenOptimizer with COBYLA (100
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iterations, reps=2). Final routes are extracted using
NetworkX.

Classical solvers complement the quantum components
by offering GNN-based route prediction and K-Means
clustering. The GNN models learn from historical pat-
terns to propose effective routing schemes [48], while
K-Means efficiently partitions the location space [49].
A dynamic solver selection mechanism chooses the
most appropriate method based on problem charac-
teristics, ensuring robust performance across different
scales.

4.2 Data Layer

The data layer bridges the gap between raw logistics
data and optimization engines, with support tailored for
the City of Antwerp Open Data Portal [50]]. Datasets in-
clude structured location data such as public bike park-
ing, facilities, and service points in CSV format. The
system imports these datasets directly, extracting object
IDs, coordinates, and names.

To ensure compatibility, the system performs coordi-
nate transformations from EPSG:3857 to EPSG:4326
and validates all required fields. This preprocessing
phase ensures that incoming data is fully compatible
with the optimization solvers. Technologies used
include osmnx for road network graph generation,
networkx for graph operations, and pyproj for
coordinate transformations. Pandas handles tabular
data management, while folium enables map-based
visualization. Diskcache is employed for local result
caching to enhance responsiveness.

The system also features a user-friendly Dash inter-
face. Users can upload files through a drag-and-drop
interface or select from existing entries in the
assets/CSVs directory. Uploaded files are automat-
ically processed, including coordinate transformation
and route metadata extraction, readying the data for
downstream optimization.

4.3 External Dependencies

The system relies on several external packages

and SDKs. Web-based visualization and inter-
action are managed through Dash, Folium,
and OSMnx. Quantum capabilities are supported

via the D-Wave Ocean SDK (including dimod
for problem formulation) and the IBM Qiskit
stack  (including giskit-algorithms and
giskit-optimization). Classical machine
learning functionality is implemented using PyTorch
and PyG, while logistics graph processing and coor-
dinate transformations are handled with NetworkX,
PyProj, Pandas, NumPy, and SciPy. Performance
optimization utilizes diskcache for result caching
and multiprocess for parallel execution. The
system integrates with ERP and WMS platforms for
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Figure 2: System architecture of the MDE4QC framework for hybrid quantum-classical route optimization. The
architecture is organized into layered modules: the Data Layer handles geographic inputs and caching, the Appli-
cation Layer manages user interaction and API calls, and the Business Logic Layer defines solver logic. Solver
Backends support quantum (D-Wave and IBM Qiskit) and classical (K-Means, GNN) algorithms. External Depen-
dencies provide libraries and SDKs used across all layers. Inter-layer communication flows are shown, including

event handling, parameter passing, and result rendering.

real-time logistics data and utilizes the OpenStreetMap
API for additional geographic information.

S CASE STUDY: MULTI-VEHICLE
ROUTE PLANNING

This section presents the real-world application of our
MDEA4QC framework to the Multi-Vehicle Route Plan-
ning (MVRP) problem, implemented and tested using
real map data from the City of AntwerpEl The problem
builds upon the Capacitated Vehicle Routing Problem
(CVRP), a classical NP-hard optimization task that re-
quires assigning client visits to a fleet of vehicles such
that each vehicle respects its capacity constraint and the
overall travel distance is minimized [51]].

Unlike simplified formulations, our implementation
captures the spatial and logistical complexity of
real-world transport systems [52]]. It includes detailed
geographic representations, multiple vehicle types,

https://portaal-stadantwerpen.opendata.arcgis.com/

http://www.doi.org/10.24132/CSRN.2025-A29

depot configurations, and hybrid cost models based on
either road network routing or Euclidean geometry.

Figure [3] illustrates the types of scenarios designed to
support by our system. These range from conventional
single-depot delivery routing to advanced use cases like
dynamic route recalculation in real-time or handling
heterogeneous fleets. These variations require different
encoding strategies, cost models, and solver configu-
rations at both the Platform-Independent Model (PIM)
and Platform-Specific Model (PSM) levels.

The City of Antwerp dataset consists of real geo-
coordinates, mapped to the nearest road nodes using
OSMnx [52]. Depending on vehicle type, vehicles are
routed across this network using Dijkstra’s algorithm
or Euclidean metrics. Capacity constraints are handled
either via penalty encoding in quantum solvers or direct
enforcement in classical logic [53].

A brute-force approach is infeasible due to factorial
scaling in clients and exponential scaling in vehicles.
To overcome this, our modular solver architecture
supports classical heuristics (e.g., K-Means [54]) and
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Figure 3: Optimization scenarios modeled within the
MDEA4QC framework. The figure highlights key varia-
tions in routing complexity: depot configurations (sin-
gle vs. multiple), vehicle heterogeneity (trucks, drones,
boats), and dynamic considerations such as route recal-
culation and short-distance delivery optimization.

quantum algorithms like QAOA [21] and LeapHybrid
solvers [|55]].

6 RESULTS AND DISCUSSION

This section presents empirical evaluation of the
MDEA4QC framework through benchmarks comparing
quantum and classical solvers. Our goal was to
measure solver efficiency and provide information for
strategic decision-making.

Evaluation metrics:

¢ Total distance (m): Sum of all routes.

e Computation time (s): Optimization duration.
* Load distribution: Client-to-vehicle balance.

* Scalability: Solver response to increased client lo-
cations.

Benchmarking approach

We tested D-Wave hybrid quantum annealing and clas-
sical K-Means clustering across 18 scenarios (10-2013
clients). For each, we recorded:

* Objective distance

¢ Execution time

Regression models derived from these results guide
future solver selection [56].
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Distance and Time Projections

We applied cubic polynomial regression:

D(x) =ag +a1x+ ax* + azx’

to fit total distance and time metrics. Figures [4] and [3]
depict the results.

1e6 Distance Projection
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Figure 4: Total distance vs. client locations. Polyno-
mial regression forecasts quantum (Blue line, bottom)
vs. classical (Red line, top) crossover points.
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Figure 5: Computation time vs. client locations. Clas-
sical solvers scale better beyond 1300 clients.

Solver Decision Model

We developed a cost-based decision model to deter-
mine when quantum solvers are preferable over classi-
cal ones. The model compares distance savings against
computational time costs to guide solver selection in a
practical, scenario-dependent way.

Quantum solvers generally produce shorter total route
distances, which reduces fuel consumption and opera-
tional costs. However, they are slower and more expen-
sive to run. Classical solvers are faster and cheaper but
often generate longer routes. The model calculates the
net benefit using:

ACost = (DC — DQ) < Cq — (TQ — Tc) - Ct

where:
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* Dc,Dg: Route distances from classical and quan-
tum solvers,

* Tc,Tp: Solver runtimes,
e ¢4 Cost per kilometer,

e ¢;: Cost per unit time.

A positive ACost means the quantum solver offers fi-
nancial advantage.

We implemented this model in a spreadsheet to allow
users to adjust inputs such as delivery count, distance
cost, and compute cost. Solver behavior is estimated
using regression equations derived from empirical test
runs. This makes the model usable without requiring
programming or domain expertise.

Discussion

The implementation of the MDE4QC framework un-
derscores the evolving potential of hybrid quantum-
classical optimization in real-world logistics. While the
empirical advantages of hybrid solvers—in the scope
of this study D-Wave’s LeapHybrid models—are evi-
dent in medium-scale routing scenarios, their practical
deployment raises important considerations. Notably,
quantum solvers demonstrate superior performance in
exploring complex solution spaces, yet this comes at the
cost of increased runtime and hardware resource con-
sumption, which may not be justifiable in time-sensitive
or cost-sensitive contexts [57]].

The inclusion of a decision-support mechanism within
MDEA4QC represents a step forward in balancing these
trade-offs. By quantifying key parameters—such as
route efficiency, execution delay, and computational
cost—it shifts solver selection from heuristic choice to
evidence-based reasoning.

Despite the framework’s support for platform-
independent modeling, full integration with gate-based
quantum platforms remains incomplete. This reflects a
challenge in the NISQ era, where hardware limitations
constrain the real-world applicability of algorithms like
variational quantum algorithms (VQAs) [27]. While
promising, the utility of gate-based methods in logistics
contexts remains largely theoretical and awaits further
maturity in both software and hardware ecosystems.

An important aspect of this study is the framework’s
contribution to sustainability. MDE4QC helps reduce
travel distance and fuel usage, which supports environ-
mentally friendly logistics. This aligns with goals such
as the European Green Deal. As a result, the framework
adds value not only through technical improvements but
also by promoting greener operations.

Ultimately, while MDE4QC demonstrates how model-
driven engineering can mitigate the fragmentation of
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the quantum computing ecosystem, its broader adop-
tion will depend on improvements in backend compati-
bility, user interface integration, and adaptive capabili-
ties in dynamic logistics settings.

7 CONCLUSION AND FUTURE
WORK

The MDE4QC framework delivers a robust model-
driven solution for quantum-enhanced logistics
optimization by abstracting complex routing problems
into high-level, platform-independent models. These
are automatically transformed into executable formats
suitable for both quantum and classical backends.
With its hybrid solver architecture and intelligent
decision-making mechanism, MDE4QC enables effi-
cient and adaptable route planning. Validation using
real-world data from the City of Antwerp confirms
its effectiveness in improving routing performance
and supporting environmental sustainability. While
current limitations of gate-based quantum hardware
remain, the framework marks a significant step toward
scalable and interoperable quantum solutions for
real-world logistics. Future enhancements will target
broader platform integration and real-time dynamic
responsiveness.
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