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ABSTRACT
We propose a quantum algorithm for the filtering step in Bayesian state estimation, based on adiabatic quantum
computing (AQC). The approach embeds the likelihood function into the energy landscape of an Ising Hamilto-
nian, enabling the posterior distribution to emerge through quantum annealing. Unlike existing gate-based meth-
ods, our formulation avoids complex conditional operations and scales more naturally with the size of the state
space. Numerical simulations confirm that the resulting distributions closely match the correct posterior, even with
approximate parameter settings. This demonstrates the feasibility of AQC as a tool for probabilistic inference in
high-dimensional filtering problems.
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1 INTRODUCTION
Quantum computing has emerged as a disruptive com-
putational paradigm with the potential to address classi-
cally intractable problems across various fields, includ-
ing artificial intelligence (AI), optimization, and data
processing. One promising area of application is sensor
data fusion, a fundamental concept in robotics, surveil-
lance, autonomous vehicles, and environmental mon-
itoring, where information from multiple sources must
be integrated to infer the state of a system. The standard
mathematical framework for sensor fusion is Bayesian
filtering, which recursively applies a prediction and an
update step to estimate the posterior distribution over
the state space.

While the prediction step often relies on models that
are tractable in both classical and quantum domains,
the Bayesian update step poses significant challenges
[?]. It requires the conditioning of a prior distribution
on new measurement data using the likelihood function.
In high-dimensional state spaces, this operation quickly
becomes computationally expensive. Quantum com-
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puters, by virtue of their ability to represent and manip-
ulate high-dimensional probability distributions using
amplitude encoding, have been proposed as a potential
solution to this bottleneck.

To date, the implementation of a quantum algorithm
for the Bayesian update step proposed in [3] is em-
ploying gate-based quantum circuits. This method en-
codes the posterior distribution by applying a sequence
of state-conditioned unitary operations. While theoret-
ically sound, the approach scales poorly, as it necessi-
tates a distinct quantum gate for each possible state hy-
pothesis. This results in exponential growth in circuit
depth and complexity, rendering it impractical for real-
world systems with continuous or large discrete state
spaces.

In this paper, we introduce a novel quantum approach to
the Bayesian update step using adiabatic quantum com-
puting, specifically quantum annealing. Unlike gate-
based quantum algorithms, our method encodes the
Bayesian update directly into the energy landscape of
an Ising-type Hamiltonian. The likelihood function is
embedded into the cost function of the annealing pro-
cess, enabling the system to evolve toward the most
probable state configuration in a natural and scalable
way. This formulation bypasses the need for complex
conditional operations and opens a new direction for
quantum inference methods.

Our approach fits into the growing body of literature at
the intersection of quantum computing and artificial in-
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telligence, particularly in the use of quantum hardware
for probabilistic inference, optimization, and machine
learning. While most existing work in quantum ma-
chine learning focuses on variational circuits and clas-
sification tasks, few have addressed the challenge of re-
cursive inference under uncertainty, a critical require-
ment in real-time decision-making systems. Moreover,
our contribution complements recent research that ex-
plores quantum-enhanced data fusion, offering a con-
crete mechanism for incorporating observational data
in a probabilistically rigorous way.

We present a complete formulation of the Bayesian up-
date using quantum annealing, validate our method on
simulated sensor fusion tasks, and analyze its complex-
ity and scalability compared to classical and gate-based
quantum methods. Our results suggest that adiabatic
quantum computing provides a promising and efficient
alternative for Bayesian inference in high-dimensional
sensor fusion scenarios.

2 PROBLEM FORMULATION
Bayesian filtering is a recursive estimation method that
updates the belief over a system state based on new
observations. In its discrete form, the posterior distri-
bution p(xk|Zk) is computed by conditioning the prior
p(xk) on the latest measurement zk via the likelihood
p(zk|xk). This results in a pointwise multiplication fol-
lowed by normalization:

p(xk|Zk) ∝ p(zk|xk) · p(xk|Zk−1) (1)

Here, xk ∈ X ⊂ RD denotes the discrete state at time k,
and Zk = {z1,z2, . . . ,zk} the measurement history up to
time k.

The classical framework for Bayesian estimation and
sensor data fusion is well established, with in-depth dis-
cussions available in foundational texts [5, 2]. In many
practical applications, the state space is discretized into
a finite grid, where each axis d = 1, . . . ,D is divided
into Nd bins of size ∆d . The resulting joint distribution
p(x) over the full state space becomes a tensor of shape
N1 × N2 × . . .× ND, containing ∏

D
d=1 Nd entries. For

high-dimensional problems, this representation quickly
becomes computationally infeasible in terms of storage
and processing requirements.

Quantum computing offers a compact representation
for such distributions. Using amplitude encoding, a
quantum state |ψ⟩ of n qubits can represent a proba-
bility distribution over N = 2n states:

|ψ⟩=
N−1

∑
x=0

ax|x⟩, with |ax|2 = p(x) (2)

This encoding allows parallel access to all probability
amplitudes via quantum superposition. Measuring the
quantum state yields samples according to the probabil-
ity distribution p(x), and repeated measurement allows
estimation of statistical moments.

The objective of this work is to implement the Bayesian
filtering update on such a quantum state by transform-
ing an initial distribution (prior) into the posterior dis-
tribution through quantum evolution. In contrast to
gate-based methods, we investigate an adiabatic quan-
tum approach that leverages energy-based encoding to
shape the final state distribution according to the de-
sired posterior. The challenge lies in embedding the
likelihood information into a cost function that can be
realized through a time-dependent quantum Hamilto-
nian, while maintaining physical feasibility and com-
putational scalability.

3 ADIABATIC QUANTUM COMPUT-
ING

Adiabatic Quantum Computing (AQC) is a computa-
tional paradigm that solves optimization problems by
exploiting the adiabatic theorem of quantum mechan-
ics. The adiabatic theorem was first stated by Born and
Fock in 1928 [1]; it asserts that a quantum system re-
mains in its instantaneous eigenstate if the Hamiltonian
changes sufficiently slowly and a finite spectral gap ex-
ists. Since then, the theorem has been analyzed and
extended in a range of computational contexts [6]. In-
stead of executing a sequence of logic gates, AQC en-
codes the solution to a given problem into the ground
state of a final, problem-specific Hamiltonian. The sys-
tem is initialized in the ground state of a simple, easily
preparable Hamiltonian and then evolved slowly toward
the problem Hamiltonian. If the evolution is sufficiently
slow and the system remains isolated, the adiabatic the-
orem guarantees that the system stays in its instanta-
neous ground state throughout the process.

Formally, the total Hamiltonian of the system at time
t ∈ [0,T ] is defined as an interpolation between two
Hamiltonians:

H(t) = (1− s(t))H0 + s(t)H1, s(0) = 0, s(T ) = 1
(3)

Here, H0 is the initial (driver) Hamiltonian, whose
ground state is typically a uniform superposition over
all computational basis states. A common choice is a
transverse-field Hamiltonian, such as:

H0 =−∑
i

Xi (4)
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where Xi denotes the Pauli-X operator acting on qubit
i. The problem Hamiltonian H1 encodes the cost func-
tion of the optimization problem in its ground state.
For many problems of practical interest, H1 can be ex-
pressed in the form of an Ising Hamiltonian:

H1 = ∑
i< j

Ji jZiZ j +∑
i

hiZi (5)

where Zi is the Pauli-Z operator on qubit i, and Ji j, hi are
problem-specific coefficients derived from the structure
of the cost function. [4]

The system is evolved according to a time-dependent
schedule s(t), often chosen to be linear: s(t)= t/T . The
total evolution time T must be large enough to ensure
adiabaticity, i.e., to avoid excitations to higher energy
levels. The minimum energy gap ∆ between the ground
state and the first excited state during the evolution de-
termines the required runtime via the relation:

T ≫ 1
∆2 (6)

In practice, small violations of adiabaticity lead to a
final state that is not exactly the ground state of H1,
but rather a thermal distribution over low-energy states.
This behavior can still be useful, particularly when the
objective is to sample from a distribution shaped by the
cost landscape rather than to find a single minimum.

To use AQC for a computational problem, one must
translate the objective function into the energy land-
scape defined by H1. In our case, this objective is the
negative logarithm of the posterior distribution obtained
from Bayesian filtering. For many models with Gaus-
sian or quadratic structure, this results in a cost func-
tion that is quadratic in the discrete state variable x.
This function must then be mapped to binary variables
and reformulated as an Ising-type Hamiltonian, suitable
for implementation on quantum annealers or other AQC
platforms.

4 MAPPING THE BAYESIAN UPDATE
TO AN ISING HAMILTONIAN

In order to implement the Bayesian update step within
an adiabatic quantum computing (AQC) framework, the
corresponding posterior distribution must be encoded
into the ground state of a problem Hamiltonian. This re-
quires the formulation of the Bayesian cost function in a
quadratic form suitable for mapping to an Ising Hamil-
tonian.

4.1 Cost Function Formulation
The Bayesian filtering step corresponds to a pointwise
multiplication of the prior and the likelihood function,

followed by normalization. In log-domain and for
Gaussian models, this operation becomes additive. The
resulting cost function can be written as:

C(x) = P(x− xµ)
2 +Q(z−Ax)2 (7)

Here, x is the discrete latent variable, xµ is the prior
mean, z is the measurement, A is a linear mapping (e.g.,
a measurement matrix), and P,Q are weighting factors
representing the inverse variances of the prior and like-
lihood distributions, respectively.

Expanding this cost function yields a quadratic polyno-
mial:

C(x) = P(x2 −2xxµ + x2
µ)+Q(z2 −2Axz+A2x2)

= (P+QA2)x2 −2(Pxµ +QAz)x+(Px2
µ +Qz2)

(8)

Defining the constants:

J = P+QA2, h =−2(Pxµ +QAz), C = Px2
µ +Qz2

(9)

the cost function becomes:

C(x) = Jx2 +hx+C (10)

which is directly compatible with the energy form re-
quired for Ising-type Hamiltonians.

4.2 Ising Representation via Operator
Mapping

To translate the above polynomial into a quantum op-
erator acting on a register of qubits, we first define a
binary operator that maps computational basis states to
integers. For N qubits, let the operator Z̃i be:

Z̃i =
1
2
(I −Zi) (11)

where Zi is the Pauli-Z operator acting on qubit i. This
maps:

Z̃i |0⟩= 0, Z̃i |1⟩= |1⟩ (12)

Each computational basis state |b0b1 . . .bN−1⟩,
with bk ∈ {0,1}, represents a binary number
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x ∈ {0, . . . ,2N − 1}. We construct the correspond-
ing value operator X as:

X =
N−1

∑
k=0

2N−1−k Z̃k (13)

This operator acts diagonally in the computational basis
and returns the classical integer x encoded by the qubit
register.

4.3 Problem Hamiltonian
Replacing x by the operator X in the cost function leads
to the problem Hamiltonian:

Hp = JX2 +hX +CI (14)

This Hamiltonian is diagonal in the computational ba-
sis, and its ground state corresponds to the state |x⟩ min-
imizing the cost function:

Hp |x⟩=
(
Jx2 +hx+C

)
|x⟩ (15)

The offset term C is constant and does not affect the
ground state. Thus, the optimization reduces to find-
ing the value of x that minimizes the quadratic polyno-
mial encoded in Hp, which corresponds to the Bayesian
posterior mode under the assumed Gaussian prior and
likelihood.

This formulation enables the implementation of the
Bayesian update step as an energy minimization prob-
lem, suitable for execution on an adiabatic quantum
computer.

5 THERMAL EFFECTS AND EFFEC-
TIVE TEMPERATURE

In adiabatic quantum computing (AQC), the system
ideally remains in the ground state of a slowly evolv-
ing Hamiltonian. However, in practice, non-adiabatic
transitions may occur due to finite evolution time, es-
pecially near avoided level crossings. As a result, the
final quantum state does not necessarily coincide with
the exact ground state but instead resembles a thermal
mixture over low-energy states. This effect can be mod-
eled using a Gibbs distribution governed by an effective
temperature. [7]

Formally, the probability of observing a state x with en-
ergy E(x) is given by:

P(x) =
1
Z

exp(−βeff E(x)), (16)

Z = ∑
x

exp(−βeff E(x)) (17)

Here, βeff = 1/Teff denotes the inverse effective tem-
perature that characterizes the deviation from ideal adi-
abaticity. The key challenge in AQC-based sampling
is that this parameter is not externally controllable, but
rather emerges from the physical dynamics of the sys-
tem.

To derive the dependence of βeff on system parame-
ters, consider a two-level quantum system with a time-
dependent Hamiltonian:

H(t) =
∆

2
σx +

vt
2

σz (18)

where ∆ is the minimum spectral gap and v is the rate
at which the diabatic levels sweep past each other. Ac-
cording to Landau-Zener theory, the excitation proba-
bility to the first excited state is:

Pexc = exp
(
−π∆2

2h̄v

)
(19)

as shown in the derivation by Sun [8].
Assuming the ground and excited state energies are
E0 = 0 and E1 = ∆, and defining p0 = 1−Pexc, p1 =
Pexc, we compare the resulting state occupations to a
thermal distribution:

p1

p0
= exp(−βeff∆) (20)

Solving for βeff yields:

βeff =
1
∆

ln
(

1
Pexc

−1
)
=

1
∆

ln
(

exp
(

π∆2

2h̄v

)
−1

)
(21)

For small Pexc (i.e., in the adiabatic regime), we can
approximate:

ln(exp(A)−1)≈ A ⇒ βeff ≈
π∆

2h̄v
(22)

This results in the proportionality:

βeff ∝
∆2

v
(23)

In most practical implementations, the Hamiltonian is
interpolated via a schedule s(t), with s(0)= 0, s(T )= 1.
For a linear ramp s(t) = t/T , we have v ∝ ṡ(t) = 1/T ,
leading to:

ISSN 2464-4617 (print) 
ISSN 2464-4625 (online)

Quantum Informatics, Computing & Technology 2025 
QC-Horizon 2025 https://www.qc-horizon.eu/

http://www.doi.org/10.24132/CSRN.2025-A23 24 Computer Science Research Notes - CSRN



βeff ∝ ∆
2T (24)

This fundamental relationship illustrates that slower
sweeps (larger T ) yield lower effective temperatures
and distributions that are more sharply peaked around
the ground state. In the context of Bayesian filtering,
this directly controls the concentration of the posterior
approximation. Consequently, βeff plays a critical role
in tuning the quality and fidelity of the resulting distri-
bution, and must be taken into account when designing
quantum filtering procedures.

6 CALIBRATION OF THE ENERGY
SCALE

As shown in the previous section, the effective inverse
temperature βeff determines how sharply the final quan-
tum state concentrates near the ground state. In the con-
text of Bayesian filtering, this affects the shape of the
posterior distribution obtained from a quantum anneal-
ing. If βeff ̸= 1, the resulting distribution deviates from
the intended target density. To correct for this deviation,
we introduce a scalar energy scaling factor α such that
the product α ·βeff = 1, restoring the desired statistical
form.

6.1 Motivation and Objective
To illustrate the effect of the effective inverse tempera-
ture on the resulting distribution, we assume that both
the prior and the likelihood are Gaussian. In this case,
the energy function used in the quantum annealing pro-
cess corresponds to the negative logarithm of Gaussian
density itself. The quantum system then evolves into a
mixed state whose measurement statistics approximate
a Boltzmann distribution with energy E(x) and inverse
temperature βeff. As a result, the resulting distribution
is:

Psim(x)≈
1

Zeff
exp(−βeffE(x)) (25)

For quadratic energies of the form E(x) = (x−µ)2

2σ2 , this
becomes:

Psim(x) ∝ exp
(
− βeff

2σ2 (x−µ)2
)

(26)

If βeff > 1, the distribution is narrower than intended; if
βeff < 1, it is broader. To ensure that the quantum simu-
lation reflects the desired distribution shape, we rescale
the energy function prior to execution:

E ′(x) = αE(x) (27)

Choosing α = 1/βeff yields:

Psim(x) ∝ exp(−βeff ·αE(x)) = exp(−E(x)) (28)

This correction aligns the quantum-measured distribu-
tion with the original posterior target.

6.2 Estimating βeff

To determine the appropriate scaling factor α , we must
first estimate βeff empirically. This can be accom-
plished through histogram analysis of the measured
quantum output. The procedure is as follows:

1. Run the quantum sweep using the unscaled Hamil-
tonian (α = 1).

2. Measure the resulting distribution Psim(x).

3. Perform a logarithmic transformation:

lnPsim(x) = c−βeffE(x) (29)

where c =− lnZeff is an unknown constant offset.

4. Fit a straight line to the data {xi, lnPsim(xi)} using
least squares. The slope yields an estimate of −βeff.

Only data points with Psim(x)> 0 are considered in the
fit to avoid singularities.

Once βeff has been estimated, we define the energy scal-
ing factor as:

α =
1

βeff
(30)

This scaling is then applied to the Ising Hamiltonian
before the next quantum run. In practice, this calibra-
tion step ensures that the simulated posterior matches
the desired Bayesian update distribution in both shape
and concentration. The correction is particularly impor-
tant for accurately capturing uncertainties in probabilis-
tic inference, where even slight distortions in variance
can significantly affect the interpretation of the result.

7 NUMERICAL EVALUATION
To assess the performance of our adiabatic quantum
filtering method, we compare the output distribution of
the AQC-based approach with both the exact Bayesian
posterior and an alternative quantum method referred
to as Quantum Flow, which is based on a gate-based
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realization of the posterior update in proposed this
work [3].

Figure 1 shows the resulting probability distributions
for a concrete one-dimensional filtering example. The
prior distribution is Gaussian with mean µ = 9 and stan-
dard deviation σ = 3. The likelihood is centered at
z = 17 with σ = 4. The exact posterior is then analyt-
ically given by a Gaussian with mean µ = 11.880 and
σ = 2.4.

Our AQC-based approach was executed with an energy
scaling factor α = 0.33, yielding an empirical distri-
bution with mean µ = 12.175 and standard deviation
σ = 2.116. The Quantum Flow approach produces a
slightly lower mean µ = 10.53 while matching the pos-
terior width exactly with σ = 2.4.

Figure 1: Comparison of the output distribution from
the AQC-based approach and the gate-based Quantum
Flow method against the analytical posterior.

Method Mean Std
Posterior (analytical) 11.880 2.400
Quantum Flow 10.530 2.400
AQC Approach 12.175 2.116

Table 1: Comparison of the mean and standard devia-
tion of the posterior approximation obtained by differ-
ent quantum methods.

Both quantum methods closely approximate the correct
posterior distribution. The AQC-based solution slightly
overestimates the posterior mean but provides a sharper
distribution. The Quantum Flow approach matches the
target standard deviation but slightly underestimates the
mean. These results highlight that the proposed adia-
batic method can yield accurate posterior approxima-
tions from raw quantum measurement statistics without
explicit gate synthesis of the update rule.

It is important to emphasize that the energy scaling fac-
tor α = 0.33 used in this example was not fine-tuned,
but rather estimated heuristically based on a single cal-
ibration run. Despite this lack of optimization, the re-

sulting AQC distribution matches the shape and loca-
tion of the posterior with reasonably high accuracy.
This indicates that the proposed adiabatic approach is
robust under approximate calibration and does not re-
quire precise knowledge of the effective temperature a
priori. Further improvement could be achieved by sys-
tematically analyzing the energy gap ∆ along the an-
nealing path and its influence on the effective temper-
ature. This would allow for targeted adjustment of the
ramp duration or energy scaling to better align the re-
sulting distribution with the theoretical posterior.

8 CONCLUSION
We have presented a novel approach to the Bayesian fil-
tering update using adiabatic quantum computing. By
encoding the likelihood into an Ising-type Hamiltonian,
the posterior distribution emerges from the final quan-
tum state after annealing. Numerical results demon-
strate that even without fine-tuning, the resulting dis-
tributions approximate the target posterior with a close
match. This suggests that AQC offers a scalable and
physically grounded alternative to gate-based imple-
mentations of probabilistic inference. Future work may
explore optimization of annealing schedules, analysis
of spectral gaps, and hardware implementation on ex-
isting quantum annealers.
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