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ABSTRACT
Recent advancements in artificial intelligence (AI), machine learning, and quantum computing have positioned
quantum machine learning as a transformative field. Quantum computers offer a significant advantage in solving
complex problems that are difficult for classical systems, by leveraging quantum algorithms for more efficient
computations. These developments open up vast possibilities across a wide range of disciplines. In traditional
quantum mechanics, the tensor product is employed to construct multiparticle states and define operators acting
on them, serving as a tool to distinguish the Hilbert spaces of individual particles. Alternatively, the geometric
algebra framework offers an innovative approach to representing the tensor product through the geometric product,
utilizing multivectors. In this paper, we introduce several advanced algorithms, including the Quantum Quaternion
Fourier Transform, Quantum Key Distribution, Geometric Algebra Quantum Convolutional Neural Networks, and
the Geometric Fuzzy Inference Engine, aimed at enhancing robotic decision-making processes.

Keywords
Quantum Computing, Machine Learning, Geometric Algebra, medical image processing, Quantum Key distribu-
tion and Robotics

1 INTRODUCTION

Unlike tensor products, which lack an intuitive geomet-
ric interpretation, the geometric product and k-vectors
(such as points, lines, planes, and volumes) provide a
more natural and visualizable framework. Within this
context, entangled quantum states can be reinterpreted
as k-vectors, representing structured assemblies of
geometric entities, including vectors, planes, volumes,
hyperplanes, and hypervolumes. For a comprehensive
treatment of quantum theory through the lens of
geometric algebra, readers are referred to Geometric
Algebra Applications Vol. III: Integral Transforms,
MachineLearning, and Quantum Computing by E.
Bayro-Corrochano (Springer Verlag, 2024).

Quantum machine learning is an emerging inter-
disciplinary field that merges quantum computing
with machine learning techniques. In this lecture,
we investigate the foundational principles of quan-
tum machine learning within the geometric algebra
framework. Additionally, we present advanced algo-
rithmic approaches, including the Quantum Quaternion
Fourier Transform, Geometric Algebra Quantum
Convolutional Neural Networks, and the Geometric
Fuzzy Inference Engine, with applications in robotic
decision-making.

2 GATES IN GEOMETRIC ALGEBRA
Our goal is to use neural networks with neurons that
represent gates acting on n-qubits and working in the
geometric algebra framework [2, 6]. Thus, we need
first to formulate a convenient universal set of quantum
gates and then implement them as processing units of
neural networks. According to [10], a set of quantum
gates {Ûi} is seen as universal if any logical operator
ÛL can be written as

ÛL = ∏
ÛL∈{Ûi}

Ûl . (1)

Next, according to the proposed formulations by [4, 6],
we will represent simple circuit models of quantum
computation with 1-qubit quantum gates in the geomet-
ric algebra framework. This subsection is based on the
work of Cafaro and Mancini [4].

2.1 The 2-Qubit Space-Time Algebra
Cafaro and Mancini [4] described the 2-Qubit STA; for
the sake of completeness, we describe it as well. In
the 2-particle algebra there are two bivectors, Ie1

3 and
Ie2

3, playing the role of iC. The 2-particle spin states in
B[G+

3 ⊗G+
3 ]/E As illustration, the entangled state between
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a pair of 2-level systems, called a spinsinglet state , is
formulated as follows:

|ψsinglet >=
1
2
{( 1

0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)}
=

1√
2
(|01 >−|10 >) ∈H2

2. (2)

|ψsinglet >∈H2
2↔ ψ

GA
singlet ∈ [G+

3 ⊗G+
3 ], (3)

where

ψ
GA
singlet =

1

2
3
2
(Ie1

2− Ie2
2)(1− Ie1

3Ie2
3). (4)

Following the work of Cafaro and Mancini [4], the mul-
tiplication by the quantum imaginary iC for 2-particle
states is taken by the multiplication with J from the
right.

J = EIe1
3 = EIe2

3 =
1
2
(Ie1

3 + Ie2
3). (5)

Henceforth J2 =−E. The action of 2-particle Pauli op-
erators reads

ˆ
∑k⊗ Î|ψ >↔−Ie1

k ψJ, ˆ
∑k⊗

ˆ
∑l |ψ >↔−Ie1

k Ie2
l ψE, Î⊗ ˆ

∑k |ψ >↔−Ie2
k ψJ. (6)

2.2 Quantum NOT Gate (or Bit Flip
Quantum Model)

A nontrivial reversible operation applied to a single
qubit is done by means of the NOT operation gate de-
noted here by ∑̂1. Let us apply a 1-qubit quantum gate
given by ψGA

|q = a0 +a2Ie2. Then, the ∑̂1 is defined as

ˆ
∑1|q >

def
= |q⊕1 >↔ ψ

GA
|q⊕1>

def
= e1(a0 +a2Ie2)e3.

Since Iei = eiI and eie j = ei∧e j, we obtain

ˆ
∑1|q >

def
= |q⊕1 >↔ ψ

GA
|q⊕1> =−(a2 +a0Ie2).

The action of the unitary quantum gate ∑̂
GA
1 on the basis

{1, Ie1, Ie2, Ie3} ∈ G+
3 is as follows:

ˆ
∑

GA

1 : 1→−Ie2,
ˆ
∑

GA

1 : Ie1→ Ie3,
ˆ
∑

GA

1 : Ie2→

−1, ˆ
∑

GA

1 : Ie3→ Ie1.

2.3 Quantum Phase Flip Gate
The reversible operation to a single qubit is the phase
flip gate denoted by ∑̂3. In the GA framework, the ac-
tion of the unitary quantum gate ∑̂

GA
3 on the multivector

ψGA
|q| = a0 +a2Ie2 is given by

ˆ
∑3|q >

def
= (−1)q|q >↔ ψ

GA
(−1)q|q>

def
=

= e3(a0 +a2Ie2)e3

= a0−a2Ie2.

The unitary quantum gate ∑̂
GA
3 acts on the basis

{1, Ie1, Ie2, Ie3} ∈ G+
3 as follows

ˆ
∑

GA

3 : 1→ 1, ˆ
∑

GA

3 : Ie1→−Ie1,
ˆ
∑

GA

3 : Ie2→

−Ie2,
ˆ
∑

GA

3 : Ie3→ Ie3.

2.4 Quantum Bit and Phase Flip Gate
A combination of two reversible operations, ∑̂

GA
1 and

∑̂
GA
3 results in another reversible operation to be applied

on a single qubit. This will be denoted by ∑̂2
def
= iC∑̂1 ◦

∑̂3 and its action on ψGA
|q> = a0 +a2Ie2 is given by

ˆ
∑2|q >

def
= iC(−1)q|q⊕1 >↔ ψ

GA
(−1)q|q⊕1>

def
=

e2(a0 +a2Ie2)e3 = (a2−a0Ie2)Ie3.

The unitary quantum gate ∑̂
GA
2 acts on the basis

{1, Ie1, Ie2, Ie3} ∈ G+
3 as follows

ˆ
∑

GA

2 : 1→ Ie1,
ˆ
∑

GA

2 : Ie1→ 1, ˆ
∑

GA

2 : Ie2→

Ie3,
ˆ
∑

GA

2 : Ie3→ Ie2.

2.5 Hadamar Quantum Gate
The GA formulation of the Walsh-Hadamard quantum
gate Ĥ def

= ∑̂1+∑̂3√
2

named ĤGA acts on ψGA
|q> = a0+a2Ie2

as follows

Ĥ|q >
def
=

1√
2
[|q⊕1 >+(−1)q|q >]

↔ ψ
GA
Ĥ|q

def
=

(e1 + e3√
2

)
(a1 +a2Ie2)e3

=
a0√

2
(1− Ie2)−

a2√
2
(1+ Ie2).

The Hadamard transformations of the states, |+ > and
|−> are given as follows:

|+>
def
=
|0 >+|1 >√

2
↔ ψ

GA
|+> =

1− Ie2√
2

,

|−>
def
=
|0 >−|1 >√

2
↔ ψ

GA
|−> =

1+ Ie2√
2

.
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The unitary quantum gate ĤGA acts on the basis
{1, Ie1, Ie2, Ie3} ∈ G+

3 as follows

ĤGA : 1→ 1− Ie2√
2

, ĤGA : Ie1→
−Ie1 + Ie3√

2
,

ĤGA : Ie2→−
1+ Ie2√

2
, ĤGA : Ie3→

Ie1 + Ie3√
2

.

2.6 Rotation Quantum Gate

The action of rotation gates R̂GA
θ

acts on ψGA
|q> = a0 +

a2Ie2 as

follows

R̂θ |q >
def
=

(1+ exp(iCθ )

2
+(−1)q 1− exp(iCθ )

2

)
|q >

↔ ψ
GA
R̂θ |q

def
= a0 +a2Ie2(cosθ + Ie3 sinθ)

The unitary quantum gate R̂GA
θ

acts on the basis
{1, Ie1, Ie2, Ie3} ∈ G+

3 in the following manner:

R̂GA
θ : 1→ 1, R̂GA

θ : Ie1→ Ie1(cosθ + Ie3 sinθ),

R̂GA
θ : Ie2→ Ie2(cosθ + Ie3 sinθ), R̂GA

θ : Ie3→ Ie3.

Table 2 presents a summary of the most relevant quan-
tum gates in the geometric algebra framework to act on
the basis states {1, Ie1, Ie2, Ie3} ∈ G+

3 .

1−QubitState N PF BPF
1 −Ie2 1 Ie1
Ie1 Ie3 −Ie1 1
Ie2 −1 −Ie2 Ie3
Ie3 Ie1 Ie3 Ie2

Table 1: Quantum gates act on the basis states
{1, Ie1, Ie2, Ie3} ∈ G+

3 , NOT (N), Phase Flip (PF), Bit
and Phase Flip (BPF).

1−QubitState Hadamard Rotation

1 1−Ie2√
2

1

Ie1
−Ie1+Ie3√

2
Ie1(cosθ + Ie3 sinθ)

Ie2 − 1+Ie2√
2

Ie2(cosθ + Ie3 sinθ)

Ie3
Ie1+Ie3√

2
Ie3

Table 2: Quantum gates to act on the basis states
{1, Ie1, Ie2, Ie3} ∈ G+

3 , Hadamar and Rotation.

3 TWO-QUBIT QUANTUM COMPUT-
ING

In this subsection, we study simple circuit models with
2-qubit quantum gates using the geometric algebra
framework. This subsection is based on the work of
Cafaro and Mancini [4].
We will show that the set of maximally entangled 2-
qubit Bell states can be represented in geometric al-
gebra. The Bell states are an interesting example of
maximally entangled quantum states, and they form an
orthonormal basis BBell in the product Hilbert space
C2⊗C2 ∼= C4. Given the 2-qubit computational basis
Bc = {|00 >, |01 >, |10 >, |01 >}, according to [10]
the four Bell states can be constructed in the following
way:

|0 >⊗|0 >→ |ψBell1
def
=

[
ÛCNOT ◦ (Û⊗ Î)

]
(|0 >⊗|0 >) =

1√
2
(|0 >⊗|0 >+|1 >⊗|1 >),

|0 >⊗|1 >→ |ψBell2
def
=

[
ÛCNOT ◦ (Û⊗ Î)

]
(|0 >⊗|1 >) =

1√
2
(|0 >⊗|1 >+|1 >⊗|0 >),

|1 >⊗|0 >→ |ψBell3
def
=

[
ÛCNOT ◦ (Û⊗ Î)

]
(|1 >⊗|0 >) =

1√
2
(|0 >⊗|0nn >−|1 >⊗|1 >),

|1 >⊗|1 >→ |ψBell4
def
=

[
ÛCNOT ◦ (Û⊗ Î)

]
(|1 >⊗|1 >) =

1√
2
(|0 >⊗|1 >−|1 >⊗|0 >), (7)

where Ĥ and ÛCNOT stand for the Hadamard and the
CNOT gates respectively. The Bell basis in C2⊗C2 ∼=
C4 is given by

BBell
def
= {|ψBell1 >, |ψBell2 >, |ψBell3 >, |ψBell4 >}.

According to equation (7), we obtain

|ψBell1 >=
1√
2


1
0
0
1

 , |ψBell2 >=
1√
2


0
1
1
0

 ,

|ψBell3 >=
1√
2


1
0
0
−1

 , |ψBell4 >=
1√
2


0
1
−1
0

 .

Using equation (7), the formulation of the Bell states in
geometric algebra is as follows:

|ψBell1 >↔ ψ
GA
Bell1

=
1

2
3
2
(1+ Ie1

2Ie2
2)(1− Ie1

3Ie2
3)),

|ψBell2 >↔ ψ
GA
Bell2

=− 1

2
3
2
(Ie1

2 + Ie2
2)(1− Ie1

3Ie2
3)),

|ψBell3 >↔ ψ
GA
Bell3

=
1

2
3
2
(1− Ie1

2Ie2
2)(1− Ie1

3Ie2
3)),

|ψBell4 >↔ ψ
GA
Bell4

=
1

2
3
2
(Ie1

2− Ie2
2)(1− Ie1

3Ie2
3)).
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3.1 2-Qubit CNOT Quantum Gate
According to [10] a CNOT quantum gate can be written
as

Û12
CNOT =

1
2

[(
Î1 + ˆ

∑
1

3

)
⊗ Î2 +

(
Î1−

1

∑
3

)
⊗ ˆ

∑
2

1

]
(8)

where Û12
CNOT is the CNOT gate from qubit 1 to qubit 2,

thus

Û12
CNOT |ψ >= (9)

1
2

[
Î1⊗ Î2 + ˆ

∑
1

3⊗ Î2 + Î1⊗ ˆ
∑

2

1−
ˆ
∑

1

3

]
⊗ ˆ

∑
2

1

]
|ψ > .

Using equations (10) and (6), it follows

Î1⊗ Î2|ψ >↔ ψ, ˆ
∑

1

3⊗ Î2|ψ >↔−Ie1
3ψJ,

Î1⊗ ˆ
∑

2

1|ψ >↔−Ie2
1ψJ,

− ˆ
∑

1

3⊗
ˆ
∑

2

1|ψ >↔ Ie1
3Ie2

1ψE (10)

Now using equation (6), the CNOT gate of equation
(10) is formulated in GA as follows:

Û12
CNOT |ψ >↔ 1

2
(ψ− Ie1

3ψJ− Ie2
1ψJ+ Ie1

3Ie2
1ψE). (11)

3.2 2-Qubit Controlled-Phase Gate
According to [10], the action of the Controlled Phase
gate Û12

CP on |ψ >∈H2
2 can be formulated as

Û12
CP|ψ >= (12)

1
2

[
Î1⊗ Î2 + ˆ

∑
1

3⊗ Î2 + Î1⊗ ˆ
∑

2

3−
ˆ
∑

1

3⊗
ˆ
∑

2

3

]
|ψ > .

Using equations (13) and (6), it follows

Î1⊗ Î2|ψ >↔ ψ, ˆ
∑

1

3⊗ Î2|ψ >↔

−Ie1
3ψJ, Î1⊗ ˆ

∑
2

3|ψ >−Ie2
3ψJ,

− ˆ
∑

1

3⊗
ˆ
∑

2

3|ψ >↔ Ie1
3Ie2

3ψE (13)

Using equations (6) and (13), one can formulate in ge-
ometric algebra the controlled-phase quantum gate as
follows:

Û12
CP|ψ >← 1

2
(ψ− Ie1

3ψJ− Ie2
3ψJ+ Ie1

3Ie2
3ψE). (14)

3.3 2-Qubit SWAP Gate
According to [10], the action of the Swap gate Û12

SWAP
on |ψ >∈H2

2 can be formulated as

Û12
SWAP|ψ > (15)

=
1
2

[
Î1⊗ Î2 + ˆ

∑
1

1⊗
ˆ
∑

2

1 +
ˆ
∑

1

2⊗
ˆ
∑

2

2 +
ˆ
∑

1

3⊗
ˆ
∑

2

3

]
|ψ > .

Using equations (16), it follows

Î1⊗ Î2|ψ >↔ ψ, ˆ
∑

1

1⊗
ˆ
∑

2

1|ψ >↔−Ie1
2Ie2

2ψE, (16)

ˆ
∑

1

2⊗
ˆ
∑

2

2|ψ >↔−Ie1
2Ie2

2ψE, ˆ
∑

1

3⊗
ˆ
∑

2

3|ψ >↔−Ie1
3Ie2

3ψE

Using equation (17), the SWAP quantum gate in GA
reads

Û12
SWAP|ψ >← 1

2
(ψ− Ie1

1Ie2
1ψE− Ie2

1Ie2
2ψE− Ie1

3Ie2
3ψE).

Table 3 summarizes the most important 2-qubit quan-
tum gates formulated in the geometric algebra basis.
B[G+

3 ⊗G+
3 ]/E

2QGat GateActiononStates

CNOT 1
2 (ψ− Ie1

3ψJ− Ie2
1ψJ+ Ie1

3Ie2
1ψE)

CP 1
2 (ψ− Ie1

3ψJ− Ie2
3ψJ+ Ie1

3Ie2
3ψE)

SWAP 1
2 (ψ− Ie1

1Ie2
1ψE− Ie2

1Ie2
2ψE− Ie1

3Ie2
3ψE)

Table 3: 2-Qubit Quantum gates: CNOT, Controlled
Phase, and SWAP gates to act on the basis B[G+

3 ⊗G+
3 ]/E .

4 QUANTUM COMPUTING FOR
COMMUNICATION

Distributing quantum information between remote
locations requires the integration of emerging quantum
technologies with existing communication infrastruc-
ture, [5, 7] Achieving this integration necessitates
a thorough understanding of how communication
channels degrade transmitted quantum signals, an
essential step toward implementing practical solutions
for theoretically unconditionally secure key gener-
ation. However, current experimental quantum key
distribution (QKD) systems, which rely on photon
transmission, face limitations due to various hardware
imperfections. These non-idealities restrict the overall

performance and scalability of QKD technologies.To
advance the engineering of future QKD systems, classi-
cal simulations of the optical components used in these
systems may play a critical role, going beyond tradi-
tional characterization techniques employed in classi-
cal communication systems. The main obstacle in long-
distance quantum communication remains transmission
loss, primarily caused by absorption and scattering in
optical fibers or atmospheric channels. While classi-
cal systems compensate for such losses with optical
amplifiers acting as repeaters, this approach is not vi-
able in quantum systems, as amplifying individual pho-
tons would irreversibly destroy the quantum informa-
tion they carry. Although research into quantum re-
peaters is ongoing, these technologies are not yet ma-
ture enough to support intercontinental quantum com-
munication [11].
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In Quantum Communications we deal with teleporta-
tion; as an illustration, we present below the implemen-
tation for the Bob and Alice problem using Quaternion
Algebra.

Bob and Alice Problem
Preparation
If Alice chooses bit a ∈ 0,1 and base b ∈ {comp, j}:

|ψ >=

{
|0 > o |1 > i f b = comp,
|b0 > o |b1 >, i f b = j

depending upon if a = 0 o a = 1.

Intercept-resend (Bob)
If Alice intercepts:

1. Chooses base bE ∈ {comp, j}.
2. Measures |ψ > in BbE → obtains xE and collapses
to |e(bE )

xE >.

3. Resend |ψ ′ >= |e(bE )
xE > to Bob.

Program
INPUT: n (number of signals), pAlice ∈ [0,1]

FOR t= 1..n:

# Choices of Alice

at ← Bernoulli(1/2) # bit

bAt ← choice {comp, j} # base

Prepare:

|ψt >← |at > in base bAt
# This means:

# if bAt= comp: |Ψt >= |0 > (at = 0), o |1 >
(at = 1)

# if bAt=j : |Ψt >= |b0 > (at = 0), o |b1 >
(at = 1)

# Possible Bob Channel

if Uniform(0,1) < pBob:

bEt ← choice{comp, j}
measure to Bob in B{bEt}:

px = ||< e{(bEt )}
x |Ψt > ||2, x ∈ {0,1}

xEt ≈Categorical (p0, p1)

|Ψ′t >← |e)
{(bEt )}
{xEt} >

5 QUANTUM QUATERNION FAST
FOURIER TRANSFORM

The Quaternion Quantum Fourier Transform (QQFT)
maps the quaternion quantum set |x >= ∑

N−1
j=0 x j| j > to

the quaternion quantum state |y >= ∑
N−1
k=0 yk|k >, [3].

For the QQFT equation, it is needed to change

the complex exponential of the QFT, with a quaternion
exponential as follows

|x >=
N−1

∑
j=0

x j| j >
QQFT−→ |y >=

N−1

∑
k=0

yk|k > . (17)

| j >=
1√
N

N−1

∑
k=0

e2πµ
jk
N |k >, where, µ =

1√
3
(i+ j+ k).

The Inverse Quaternion Quantum Fourier Transform
(IQQFT) is then given by

|y >=
N−1

∑
k=0

yk|k >
IQQFT−→ |x >=

N−1

∑
j=0

x j| j >, (18)

and

|k >=
1√
N

N−1

∑
j=0

e−2πµ
jk
N | j >, where, µ =

1√
3
(i+ j+ k).

Or the unitary matrix

UQQFT =
1√
N

N−1

∑
j=0

N−1

∑
k=0

wik
N |k >< j|, (19)

where wik
N = e2πµ

jk
N . As a matrix, the corresponding

unitary operator UQQFT is given by

UQQFT =
1√
N



1 1 1 1 . . . 1
1 wn w2

n w3
n . . . wN−1

n

1 w2
n w4

n w6
n . . . w2(N−1)

n

1 w3
n w6

n w9
n . . . w3(N−1)

n

...
...

...
...

...
1 wN−1

n w2(N−1)
n w3(N−1)

n . . . w(N−1)(N−1)
n


,

where wn = e
2πµ

2n . For the UIQQFT , we use wik
N =

e−2πµ
jk
N instead.

5.1 Application of the Quaternion Quan-
tum Fast Fourier Transform

Given an RGB f (x,y) image, each pixel can be repre-
sented as a pure quaternion as follows:

q(x,y) = (0, q⃗) = R(x,y)i+G(x,y) j+B(x,y)k (20)

However, we propose instead to use the following ex-
ponential function

q(x,y) = eθn = cos(θ)+nsin(θ), (21)
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where

n =
R(x,y)i+G(x,y) j+B(x,y)k√
R(x,y)2 +G(x,y)2 +B(x,y)2

,

θ =
√

R(x,y)2 +G(x,y)2 +B(x,y)2.

A quantum quaternion RGB image pixel x is repre-
sented by two qubits, which is a superposition of four
quantum states as follows:

x = α1|00 >+α2|01 >+α3|10 >+α4|11 >, (22)

where for |n|=
√

R(x,y)2 +G(x,y)2 +B(x,y)2,

α1 = cos(θ), α2 =
sin(θ)
|n|

R(x,y)i, (23)

α3 =
sin(θ)
|n|

G(x,y) j, α4 =
sin(θ)
|n|

B(x,y)k,

where ∑
4
n=1 α2

n = 1.

Figure 1: RGB images represented as quaternion quan-
tum images

Figure 1 shows two RGB images as quaternion quan-
tum images. Since we can not use convolution to com-
pute the filtering of quantum images, we should simply
filter the quaternion quantum image in the frequency
domain by using constraints to delimit the band of the
image in question.
To filter in the frequency domain, firstly we have to
transform the quaternion quantum image using the
Quaternion Quantum Fast Fourier Transform. In this
work, we are not using a quantum computer, but to
speed up the Quaternion Fourier Transform, we use
the Fast Fourier Transform (FFT). Figure 2 presents
the Quaternion Quantum Fast Fourier Transform of an
RBG image and the Inverse Quaternion Quantum Fast
Fourier Transform.

Figure 2: Quaternion Quantum Fast Fourier Transform
and its inverse of an RGB image, according to equations
(17) and (18)
.

6 QUANTUM COMPUTING AND MA-
CHINE LEARNING FOR IMAGE
PROCESSING. ARCHITECTURE

As shown in Figure 3, we introduce a hybrid quantum
classical convolutional neural network architecture,
designated the Geometric (Clifford) QuanConvolu-
tional Neural Network (CQCNN) [8, 9], for advanced
feature extraction in medical image analysis [1]. This
architecture synergistically integrates the represen-
tational power of quantum convolution, quaternion
convolution [6], and Clifford convolution, enabling
the preservation of multi-channel geometric corre-
lations while leveraging qquantum-enhancedfeature
embeddings. The CQCNN is designed for medical
image analysis tasks where local geometric structure is
diagnostically significant.

a)

b)
Figure 3: a) Architecture of the Quaternion Quanvolu-
tional Neural Network. b) Architecture of the Geomet-
ric (Clifford) Quanvolutional Neural Network.

The architecture of the Quaternion Quanvolutional
Neural Network QCNNs are extended to QQNNs
by adding a quanvolutional layer. By applying a
quanvolutional layer (with a 4-qubit circuit) to an RGB
(or a grayscale) input image we obtain four latent
space features that are subsequently processed by a
QQCNN;see Figure 3. The last layer corresponds to
a ffully connectedlayer with a softmax function used
for classification. The architecture of the Geometric
(Clifford) Quanvolutional Neural Network: GCNNs
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are extended to GQNNs by adding a quanvolutional
layer.

Quantum Convolutional Layer
Let I ∈RH×W×C represent the input image, where H,W
and C denote height, wwidth,and number of channels,
respectively.The quantum convolutional layer operates
as follows:

1. Patch Encoding: The image is divided into non-
overlaping patches Pk of size p× p, which are encoded
into a quantum state

|ψk >=Uenc(Pk)|0 >⊗nq

where Uenc is the parameterized encoding unitary and
nq is the number of qubits.

2. Quantum Convolution: A parameterized quantum
circuit PQC Uθ processes the eencodedstates:

|φk >Uθ |ψk >

3. Measurement: Expectation values of observables
Oi yield the feature maps:

f k,i =< φk|Oi|φk >, i = 1, ...,nk

Thus, each path yields nk scalar features, producing
quantum-generated feature maps F(Q) ∈ RHt×W t×nq .

Geometric (Clifford) Algebra Quantum Convolu-
tional Layer
The output feature maps from the quantum layer are
processed collectively within a geometric algebra
framework Gp,q, allowing the representation of vectors,
bivectors, and high-grade geometric entities.

Given the quantum feature maps F(Q), one forms a mul-
tivector representation:

M(x,y) =
nq

∑
i=1

f x,y,iei

where ei are the orthogonal basis elements of the geo-
metric algebra.

A Ggeometric algebraconvolution kernel K of size k×k
acts via the geometric product

(M ∗K)(x,y) =
k/2

∑
u=−|k/2|1

k/2

∑
v=−|k/2|

M(x+u,y+ v)K(u,v).

This convolution inherently preserves orientation,
phase, and multidimensional correlations, outperform-
ing scalar convolutions in rotational and geometric
invariance.

Figure 4: Variational Quantum Soft Actor-Critic to con-
trol the movement of a robotic arm

7 QUANTUM REINFORCEMENT
LEARNING FOR CONTINUOUS
CONTROL

Figure 4 shows a Variational Quantum Soft Actor-Critic
to control the movement of a robotic arm. We propose
to enhance the Soft Actor-Critic (SAC) algorithm for
continuous robotic control tasks by incorporating quan-
tum computing techniques, resulting in a Variational
Quantum Soft Actor-Critic (VQ-SAC) framework. The
aim is to investigate whether variational quantum cir-
cuits can improve exploration efficiency and learning
speed, addressing two key bottlenecks in real-world re-
inforcement learning (RL):

i. Exploration Strategy – avoiding inefficient or myopic
exploration in large continuous action spaces.

ii. Curse of Dimensionality – mitigating slow conver-
gence in high-dimensional state-action spaces. The ap-
proach will be evaluated in the context of robotic arm
movement control, using simulated and real-time sys-
tems.

8 QUANTUM GEOMETRIC FUZZY
INFERENCE ENGINES FOR DECI-
SION TAKING IN ROBOTICS

Figure 5: Quantum Fuzzy Inference Engine

The design of a Quantum Fuzzy Inference Engine
(QFIE) accomplishes a twofold objective. First, it
delivers an exponential speedup in the execution of
fuzzy rules compared to a classical oracle-based fuzzy
inference engine, by exploiting quantum parallelism
and amplitude encoding of fuzzy membership de-
grees. Second, it opens a novel avenue for quantum
programming via fuzzy linguistic rules, providing an
intuitive, high-level framework for defining quantum
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algorithms in terms familiar to engineers and domain
experts. This paradigm makes it possible to describe
decision processes for quantum computers using
the approximate reasoning capabilities inherent to
fuzzy logic, while leveraging quantum computational
speedups. Figure 5 shows the implemented circuit,
where a measurement operation on each qubit of
QRI is added after the implementation of the oracle.
This combination of quantum information processing,
quantum Fuzzy Finite State Machine, fuzzy logic
reasoning, and geometric modeling holds potential
for a new class of intelligent control systems that are
both computationally efficient and linguistically inter-
pretable, suitable for complex real-time applications in
robotics, autonomous systems, and adaptive control.
Next we present the implementation of the Quantum
Oracle for Fuzzy Encoding and the Quantum Fuzzy
Finite State Machines Representations.

Quantum Oracle for Fuzzy Rule Encoding
The Ffuzzyrule base has the general form:

R j : IFθ is A j AND w is B j THEN I is C j

In QFIE, the oracle O f encodes the mapping:

O f : |A j > |B j > |0 >→ |A j > |B j > |C j >

This is implemented as a controlled unitary:

O f = ∑
A,B
|A >< A|⊗ |B >< B|⊗UAB

where UAB maps the output register from |O > to the
state representing the consequent C with amplitudes
proportional to the minimum (or another t-norm) of the
antecedent memberships:

UAB|0 >=
1√

∑c α2
c

∑
c

αc|c >, αc = min(µA(θ),µB(w))

Because all rules are evaluated in quantum superposi-
tion, the complexity is reduced compared to sequential
evaluation.

Quantum Fuzzy Finite State Machine Representa-
tion
The system’s dynamics can be represented by a Quan-
tum Fuzzy Finite State Machines (QFFSM)

|ψ(t +1)>=U |ψ(t)>

where U f is a fuzzy-weighted unitary transition opera-
tor, defined as:

U f = ∑
s,s′

Λ|s′ >< s|

with fuzzy transition amplitudes Λs,s′ ∈ [0,1] satisfying
unitary constraints.

9 CONCLUSION
In traditional quantum mechanics, the tensor product
is employed to construct multiparticle states and define
operators acting on them, serving as a tool to distin-
guish the Hilbert spaces of individual particles. In con-
trast, the Ggeometric algebraframework offers an in-
novative approach for representing the tensor product
through the geometric product, utilizing multivectors.
In this paper, we have introduced several advanced al-
gorithms, including the Quantum Quaternion Fourier
Transform, Quantum Key Distribution, Geometric Al-
gebra Quantum Convolutional Neural Networks, and
the Geometric Fuzzy Inference Engine, aimed at en-
hancing robotic decision-making processes.
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